Liu Shenggang, Tao Tianjiong, Ma Heli, et al. Method of big step height measurements based on white light frequency domain interferometry[J]. High Power Laser and Particle Beams, 2015, 27: 091007. doi: 10.11884/HPLPB201527.091007
Citation: Hu Yun, Zhang Jiyan, Jiang Shaoen, et al. Experiment study of extended X-ray absorption fine structure spectrum on SG-III prototype facility[J]. High Power Laser and Particle Beams, 2020, 32: 052002. doi: 10.11884/HPLPB202032.200022

Experiment study of extended X-ray absorption fine structure spectrum on SG-III prototype facility

doi: 10.11884/HPLPB202032.200022
  • Received Date: 2020-01-17
  • Rev Recd Date: 2020-03-30
  • Publish Date: 2020-02-10
  • This article intoduces the principle of extended X-ray absorption fine structure(EXAFS) as parameter diagnostic method on large laser facilities, as well as the experiments on SG-III prototype facility for high quality EXAFS. Using glass ball, CH capsule and Au ball as backlighters, through multi-shots accumulation method, EXAFS of Ti in ambient condition with good signal-to-noise ratio were obtained. The experiment results coincide well with the results of the synchrotron radiation experiment, indicating the correctness and reliability of the experimental design. Analysis of the results show the factors affecting the EXAFS spectrum quality are photon counts, spectral resolution, noise and flaws on apparatuses.

  • [1]
    Smith R F, Lorenz K T, Ho D, et al. Graded-density reservoirs for accessing high stress low temperature material states[J]. Astrophysics and Space Science, 2006, 307: 269-272.
    [2]
    Bradley D K, Eggert J H, Smith R F, et al. Diamond at 800 GPa[J]. Physical Review Letters, 2009, 102: 075503. doi: 10.1103/PhysRevLett.102.075503
    [3]
    Wang J, Smith R F, Eggert J H, et al. Ramp compression of iron to 273 GPa[J]. J Appl Phys, 2013, 114: 023513. doi: 10.1063/1.4813091
    [4]
    Eggert J H, Smith R F, Swift D C, et al. Ramp compression of tantalum to 330 GPa[J]. High Pressure Res, 2015, 35: 339-354. doi: 10.1080/08957959.2015.1071361
    [5]
    Zhong J, Li Y, Wang X, et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers[J]. Nature Physics, 2010, 6: 984-987. doi: 10.1038/nphys1790
    [6]
    Dong Q L, Wang S J, Lu Q M, et al. Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction[J]. Phys Rev Lett, 2012, 108: 215001. doi: 10.1103/PhysRevLett.108.215001
    [7]
    Yaakobi B, Marshall F J, Boehly T R, et al. Extended X-ray absorption fine-structure experiments with a laser-imploded target as a radiation source[J]. Journal of the Optical Society of America B-Optical Physics, 2003, 20: 238-245. doi: 10.1364/JOSAB.20.000238
    [8]
    Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended X-ray absorption fine structure measurements of laser-shocked V and Ti and crystal phase transformation in Ti[J]. Physical Review Letters, 2004, 92: 095504.
    [9]
    Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended X-ray absorption fine structure measurements of laser shocks in Ti and V and phase transformation in Ti[J]. Physics of Plasmas, 2004, 11: 2688-2695. doi: 10.1063/1.1646673
    [10]
    Yaakobi B, Boehly T R, Meyerhofer D D, et al. EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks[J]. Physical Review Letters, 2005, 95: 075501.
    [11]
    Yaakobi B, Boehly T R, Meyerhofer D D, et al. Extended X-ray absorption fine structure measurement of phase transformation in iron shocked by nanosecond laser[J]. Physics of Plasmas, 2005, 12: 092703.
    [12]
    Yaakobi B, Boehly T R, Sangster T C, et al. Extended X-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser[J]. Physics of Plasmas, 2008, 15: 062703.
    [13]
    Ping Y, Coppari F, Hicks D G, et al. Solid iron compressed up to 560 GPa[J]. Phys Rev Lett, 2013, 111: 065501. doi: 10.1103/PhysRevLett.111.065501
    [14]
    Coppari F, Thorn D B, Kemp G E, et al. X-ray source development for EXAFS measurements on the National Ignition Facility[J]. The Review of Scientific Instruments, 2017, 88: 083907. doi: 10.1063/1.4999649
    [15]
    Xue Q X, Wang Z B, Jiang S E, et al. Laser-direct-driven quasi-isentropic experiments on aluminum[J]. Physics of Plasmas, 2014, 21: 072709. doi: 10.1063/1.4890851
    [16]
    Xue Q X, Wang Z B, Jiang S E, et al. Characteristic method for isentropic compression simulation[J]. Aip Adv, 2014, 4: 057127. doi: 10.1063/1.4880039
    [17]
    Teo B K. EXAFS basic principles and data-analysis [M]. Berlin Heidelberg: Springer, 1986.
    [18]
    Sevillano E, Meuth H, Rehr J J. Extended X-ray absorption fine structure Debye-Waller factors. I. Monatomic crystals[J]. Physical Review B, 1979, 20: 4908-4911. doi: 10.1103/PhysRevB.20.4908
    [19]
    More R M, Warren K H, Young D A, et al. A new quotidian equation of state (QEOS) for hot dense matter[J]. Phys Fluids, 1988, 31: 3059-3078. doi: 10.1063/1.866963
  • Relative Articles

    [1]Chen Jinbao, Xiang Guangbiao, Wang Xiaolin, Zhang Hanwei, Zhang Jiangbin, Hua Weihong. Experimental study of self-bleaching and radiation equilibrium in output power of fiber lasers at low dose rates[J]. High Power Laser and Particle Beams, 2024, 36(12): 121001. doi: 10.11884/HPLPB202436.240384
    [2]Zhu Jingguo, Tian Ye, Yang Ying, Zhang Xin, Zheng Shengheng, Wang De’en, Han Wei. Review on laser damage fatigue effects of fused silica and other optical materials[J]. High Power Laser and Particle Beams, 2023, 35(7): 071002. doi: 10.11884/HPLPB202335.220245
    [3]Wang Feng, Li Yulong, Guan Zanyang, Zhang Xing, Li Jin, Huang Yunbao, Gan Huaquan, Che Xingsen. Application of compressed sensing technology in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2022, 34(3): 031021. doi: 10.11884/HPLPB202234.210250
    [4]Bai Qingshun, Sun Hao, Li Yuhai, Zhang Peng, Du Yunlong. Research progress on laser-induced damage mechanism and threshold improvement of pulse compression gratings[J]. High Power Laser and Particle Beams, 2022, 34(8): 081002. doi: 10.11884/HPLPB202234.210413
    [5]Ji Xiaoling, Deng Yu. Research progress on self-focusing effect of high-power laser beams propagating in inhomogeneous atmosphere[J]. High Power Laser and Particle Beams, 2021, 33(8): 081002. doi: 10.11884/HPLPB202133.210211
    [6]Cai Hongbo, Zhang Wenshuai, Du Bao, Yan Xinxin, Shan Lianqiang, Hao Liang, Li Zhichao, Zhang Feng, Gong Tao, Yang Dong, Zou Shiyang, Zhu Shaoping, He Xiantu. Characteristic and impact of kinetic effects at interfaces of inertial confinement fusion hohlraums[J]. High Power Laser and Particle Beams, 2020, 32(9): 092007. doi: 10.11884/HPLPB202032.200134
    [7]Gao Shasha, Wu Xiaojun, He Zhibing, He Xiaoshan, Wang Tao, Zhu Fanghua, Zhang Zhanwen. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32(3): 032001. doi: 10.11884/HPLPB202032.200039
    [8]Wang Feng, Zhang Xing, Li Yulong, Chen Bolun, Chen Zhongjing, Xu Tao, Liu Xincheng, Zhao Hang, Ren Kuan, Yang Jiamin, Jiang Shaoen, Zhang Baohan. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112002. doi: 10.11884/HPLPB202032.200136
    [9]Pu Yudong, Chen Bolun, Huang Tianxuan, Miao Wenyong, Chen Jiabin, Zhang Jiyan, Yang Guohong, Yi Rongqing, Wei Minxi, Du Huabing, Peng Xiaoshi, Yu Bo, Jiang Wei, Yan Ji, Jing Longfei, Tang Qi, Song Zifeng, Jiang Shaoen, Yang Jiamin, Liu Shenye, Ding Yongkun. Experimental studies of implosion physics of indirect-drive inertial confinement fusion[J]. High Power Laser and Particle Beams, 2015, 27(03): 032015. doi: 10.11884/HPLPB201527.032015
    [10]Xiong Jiuliang, Wu Zhancheng, Sun Yongwei. Interference of ultra-wide spectrum high power microwave on continuous wave doppler fuze[J]. High Power Laser and Particle Beams, 2015, 27(10): 103235. doi: 10.11884/HPLPB201527.103235
    [11]Zhang Lin, Du Kai. Target technologies for laser inertial confinement fusion: State-of-the-art and future perspective[J]. High Power Laser and Particle Beams, 2013, 25(12): 3091-3097. doi: 3091
    [12]xie na, huang wanqing, guo yi, wang xiaodong, fang xiangyun, zhao yuxia, li qing, sun li, zhao runchang, su jingqin, zhu qihua. Improving near field of high-power laser beams using two-photon absorption material[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [13]hu lili, chen shubin, meng tao, chen wei, tang jingping, wang biao, hu junjiang, wen lei, li shunguang, jiang yasi, zhang junzhou, jiang zhonghong. Advances in high performance large aperture neodymium laser glasses[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [14]shen zicai, zhao chunqing, ding yigang, zheng huiqi, liu yuming, feng weiquan. Electrical property degradation and damage mechanism of ITO/F46/Ag thermal control coating under electron irradiation[J]. High Power Laser and Particle Beams, 2010, 22(06): 0- .
    [15]chen ji-xin, sui zhan, chen fu-shen, liu zhi-qiang, li ming-zhong, wang jian-jun, luo yi-ming. Stimulated Raman scattering and thermal effect in high power double clad fiber laser[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [16]wei guang-hui, chen ya-zhou, sun yong-wei. Effects and effecting mechanism of microwave irradiation on the radio fuse[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
    [17]hu peng, chen fa-liang. Inclusion damage mechanisms of optical glass under laser irradiation[J]. High Power Laser and Particle Beams, 2005, 17(07): 0- .
    [18]xie liang-ping, su jin-qin, jing feng, zhao jian-ling, wang wen-yi, wang xiao, peng zhi-tao. Nonlinear hot holographic image in high power soli-state laser systems[J]. High Power Laser and Particle Beams, 2004, 16(05): 0- .
  • Cited by

    Periodical cited type(2)

    1. 祝德充,随艳峰,岳军会,彭月梅,刘佳明,曹建社. 高能光源增强器束流横向尺寸测量系统设计. 强激光与粒子束. 2021(04): 85-89 . 本站查看
    2. 王洪建,肖沙里,林睿,蒋昀赟. 基于Denauit-Hartenbery的高分辨Kirkpatrick-Baez镜成像结构设计与控制方法研究. 南京信息工程大学学报(自然科学版). 2020(03): 341-346 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.4 %FULLTEXT: 20.4 %META: 68.7 %META: 68.7 %PDF: 10.9 %PDF: 10.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.8 %其他: 4.8 %其他: 0.3 %其他: 0.3 %China: 0.6 %China: 0.6 %India: 0.0 %India: 0.0 %Ireland: 0.1 %Ireland: 0.1 %Kao-sung: 0.0 %Kao-sung: 0.0 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Seongnam-si: 0.0 %Seongnam-si: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.5 %[]: 0.5 %上海: 1.9 %上海: 1.9 %东莞: 0.1 %东莞: 0.1 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %保定: 0.0 %保定: 0.0 %兰州: 0.0 %兰州: 0.0 %北京: 22.1 %北京: 22.1 %十堰: 0.1 %十堰: 0.1 %南京: 0.2 %南京: 0.2 %南宁: 0.0 %南宁: 0.0 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %厦门: 0.1 %厦门: 0.1 %台州: 0.2 %台州: 0.2 %合肥: 0.8 %合肥: 0.8 %吉林: 0.0 %吉林: 0.0 %咸阳: 0.0 %咸阳: 0.0 %圣地亚哥: 0.2 %圣地亚哥: 0.2 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %太原: 0.0 %太原: 0.0 %安康: 0.0 %安康: 0.0 %宜昌: 0.3 %宜昌: 0.3 %宣城: 0.1 %宣城: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.4 %广州: 0.4 %张家口: 0.9 %张家口: 0.9 %成都: 1.2 %成都: 1.2 %成都市武侯区: 0.0 %成都市武侯区: 0.0 %扬州: 0.0 %扬州: 0.0 %承德: 0.0 %承德: 0.0 %抚顺: 0.0 %抚顺: 0.0 %新乡: 0.1 %新乡: 0.1 %晋城: 0.1 %晋城: 0.1 %普林斯顿: 0.1 %普林斯顿: 0.1 %普洱: 0.0 %普洱: 0.0 %曲靖: 0.1 %曲靖: 0.1 %杭州: 1.3 %杭州: 1.3 %栃木: 0.0 %栃木: 0.0 %桂林: 0.0 %桂林: 0.0 %榆林: 0.1 %榆林: 0.1 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %济源: 0.0 %济源: 0.0 %深圳: 0.1 %深圳: 0.1 %温州: 0.0 %温州: 0.0 %湖州: 0.1 %湖州: 0.1 %漯河: 0.7 %漯河: 0.7 %福岛: 0.1 %福岛: 0.1 %福州: 0.4 %福州: 0.4 %秦皇岛: 0.0 %秦皇岛: 0.0 %绵阳: 1.2 %绵阳: 1.2 %芒廷维尤: 15.2 %芒廷维尤: 15.2 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 38.0 %西宁: 38.0 %西安: 0.5 %西安: 0.5 %贵港: 0.0 %贵港: 0.0 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.0 %运城: 1.0 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.7 %郑州: 0.7 %都伯林: 0.1 %都伯林: 0.1 %重庆: 0.4 %重庆: 0.4 %金华: 0.0 %金华: 0.0 %锦州: 0.0 %锦州: 0.0 %长沙: 0.6 %长沙: 0.6 %长治: 0.1 %长治: 0.1 %阳泉: 0.0 %阳泉: 0.0 %隆德: 0.0 %隆德: 0.0 %青岛: 0.1 %青岛: 0.1 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %黄冈: 0.0 %黄冈: 0.0 %其他其他ChinaIndiaIrelandKao-sungKorea Republic ofSeongnam-siUnited States[]上海东莞中山临汾丹东保定兰州北京十堰南京南宁博阿努瓦厦门台州合肥吉林咸阳圣地亚哥大连天津太原安康宜昌宣城常州广州张家口成都成都市武侯区扬州承德抚顺新乡晋城普林斯顿普洱曲靖杭州栃木桂林榆林武汉沈阳洛阳济南济源深圳温州湖州漯河福岛福州秦皇岛绵阳芒廷维尤芝加哥苏州衢州西宁西安贵港贵阳运城连云港邯郸郑州都伯林重庆金华锦州长沙长治阳泉隆德青岛香港特别行政区黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (1634) PDF downloads(80) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return