Citation: | Pan Shunmin, Wei Yaowei, An Chenhui, et al. Electric field enhancement effect and damage characteristics of nodular defect in 45° high-reflection coating[J]. High Power Laser and Particle Beams, 2020, 32: 071006. doi: 10.11884/HPLPB202032.200028 |
[1] |
Koldunov M F, Manenkov A A, Pocotilo I L. Theory of laser-induced damage to optical coatings: inclusion-initiated thermal explosion mechanism[C]//Proc of SPIE. 1994, 2114: 469-487.
|
[2] |
Kozlowski M R, Chow R. The role of defects in laser damage of multilayer coatings[C]//Proc of SPIE. 1994, 2114: 640-649.
|
[3] |
Dijon J, Kaiser N, Schallenberg U B, et al. Influence of substrate cleaning on LIDT of 355 nm HR coatings[C]//Proc of SPIE. 1997, 2966: 178-186.
|
[4] |
Zhang Dawei, Shao Jianda, Fan Shuhai, et al. The effects of ion cleaning on the roughness of substrates and laser induced damage thresholds of films[C]//Optical Interference Coatings. 2004: 345-348
|
[5] |
Bevis R P, Sheehan L M, Smith D J, et al. The advantages of evaporation of Hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition[C]//Proc of SPIE. 1999, 3738: 318-324.
|
[6] |
Chow R, Falabella S, Loomis G E, et al. Reactive evapoation of low defect density hafnia[J]. Applied Optics, 1993, 32(28): 5567-5574. doi: 10.1364/AO.32.005567
|
[7] |
谢凌云, 程鑫彬, 张锦龙, 等. 节瘤缺陷激光损伤的研究进展[J]. 强激光与粒子束, 2016, 28:090201. (Xie Lingyun, Cheng Xinbin, Zhang Jinlong, et al. Research process of laser-induced damage of nodular defects[J]. High Power Laser and Particle Beams, 2016, 28: 090201 doi: 10.11884/HPLPB201628.160058
|
[8] |
Liu Xiaofeng, Zhao Yuan’an, et al. Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings[J]. Applied Surface Science, 2010, 256(12): 3783-3788. doi: 10.1016/j.apsusc.2010.01.026
|
[9] |
Dijon J, Poulingue M, Hue J. Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection[C]//Proc of SPIE. 1999, 3578: 387-397.
|
[10] |
Cheng Xinbin, Wei Zeyong, Zhang Jinlong, et al. Physical insight toward electric field enhancement at nodular defects in optical coatings[J]. Optics Express, 2015, 23(7): 8609-8619. doi: 10.1364/OE.23.008609
|
[11] |
Poulingue M, Dijon J, Rafin B, et al. Generation of defects with diamond and silica particles inside high-reflection coatings: influence on the laser damage threshold[C]//Proc of SPIE. 1999, 3738: 325-336.
|
[12] |
Shan Yongguang, He Hongbo, Wei Chaoyang, et al. Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating[J]. Applied Optics, 2010, 49(22): 4290-4295. doi: 10.1364/AO.49.004290
|
[13] |
Cheng Xinbin, Lequime M, Macleod H A, et al. Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors[C]//Proc of SPIE. 2011: 816816.
|
[14] |
Deford J F, Kozlowski M R. Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings[C]//Proc of SPIE. 1993, 1848: 455-472.
|
[15] |
Cheng Xinbin, Zhang Jinlong, Ding Tao, et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses[J]. Light: Science & Applications, 2013, 2(6): e80.
|
[16] |
Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Trans Antennas & Propagation, 1966, 14: 302-307.
|
[17] |
Hue J, Garrec P, Dijon J, et al. R-on-1 automatic mapping: a new tool for laser damage testing[C]//Proc of SPIE. 1995, 2714: 90-101.
|
[18] |
Han Jinghua, Li Yaguo, He Changtao, et al. Effects of laser plasma on damage in optical glass induced by pulsed lasers[J]. Optical Engineering, 2012, 51: 121809. doi: 10.1117/1.OE.51.12.121809
|
[19] |
周成虎, 张秋慧, 黄明明, 等. 杂质微粒对薄膜的损伤效应[J]. 红外与激光工程, 2016, 45:0721004. (Zhou Chenghu, Zhang Qiuhui, Huang Mingming, et al. Damage effects of impurity particles on film[J]. Infrared and Laser Engineering, 2016, 45: 0721004 doi: 10.3788/irla201645.0721004
|
[20] |
Genin F Y, Stolz C J. Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings[C]//Proc of SPIE. 1996, 2870: 439-448.
|
[21] |
Zhu Meiping, Yi Kui, Li Dawei, et al. Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings[J]. Optics Communications, 2014, 319: 75-79. doi: 10.1016/j.optcom.2014.01.014
|
[22] |
Zhao Yuan’an, Gao Weidong, Shao Jianda, et al. Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation[J]. Applied Surface Science, 2004, 227(1/4): 275-281.
|
[23] |
Dijon J, Rafin B, Pelle C, et al. One-hundred Joule per square centimeter 1.06-μm mirrors[C]//Proc of SPIE. 2000, 3902: 158-168.
|
[24] |
Cheng Xinbin, Shen Zhengxiang, Jiao Hongfei, et al. Laser damage study of nodules in electron-beam-evaporated HfO2/SiO2 high reflectors[J]. Applied Optics, 2011, 50(9): 357-363. doi: 10.1364/AO.50.00C357
|
[25] |
Liu Xiaofeng, Zhao Yuan’an, Gao Yanqi, et al. Investigations on the catastrophic damage in multilayer dielectric films[J]. Applied Optics, 2013, 52(10): 2194-2199. doi: 10.1364/AO.52.002194
|