Wang Yue, Chen Zaigao, Wang Jianguo. Charge conserving emission technique for three-dimensional conformal particle-in-cell simulations[J]. High Power Laser and Particle Beams, 2016, 28: 033020. doi: 10.11884/HPLPB201628.033020
Citation: Zhou Yimei, Leng Yongbin, Xu Xingyi, et al. Signal processing algorithm optimization of bunch-by-bunch phase measurement system for storage ring[J]. High Power Laser and Particle Beams, 2020, 32: 074002. doi: 10.11884/HPLPB202032.200033

Signal processing algorithm optimization of bunch-by-bunch phase measurement system for storage ring

doi: 10.11884/HPLPB202032.200033
  • Received Date: 2020-02-17
  • Rev Recd Date: 2020-04-15
  • Publish Date: 2020-06-24
  • To further improve the accuracy of phase measurement, the Shanghai Synchrotron Radiation Facility (SSRF) Beam Instrumentation (BI) Group proposed a new signal processing method, the correlation function method, based on the bunch-by-bunch phase measurement system. This method calculates the bunch-by-bunch phase by performing pattern matching directly on all sampling points of the oscilloscope in the time domain. The advantage is that the data processing is only limited by the oscilloscope bandwidth, and more BPM (Beam Position Monitor) harmonic signals can be retained. The results show that increasing the BPM signal processing bandwidth can effectively remove the crosstalk between bunches and reduce the system measurement error caused by signal reflection. The principal component analysis (PCA) method is used to evaluate the phase measurement resolution, the larger bunch charge, the better the resolution. The precise phase dependence between the bunches can also be used to analyze the beam wake field and impedance in the storage ring.
  • [1]
    Zhao Z T, Xu H J, Ding H. Commissioning of the Shanghai Light Source[C]//Proc of PAC. 2009: 55-59.
    [2]
    冷用斌, 周伟民, 袁任贤, 等. 上海光源储存环束流位置监测系统[J]. 核技术, 2010, 33(6):401-404. (Leng Yongbin, Zhou Weimin, Yuan Renxian, et al. Beam position monitor system for SSRF storage ring[J]. Nuclear Techniques, 2010, 33(6): 401-404
    [3]
    Zhou Y M, Gao B, Zhang N, et al. Injection transient study using 6-dimensional bunch-by-bunch diagnostic system at SSRF[C]//Proc of IBIC. 2018: 542-547.
    [4]
    Podobedov B, Siemann R. New apparatus for precise synchronous phase shift measurements in storage rings[J]. Physical Review Special Topics—Accelerators and Beams, 1998, 1: 072801. doi: 10.1103/PhysRevSTAB.1.072801
    [5]
    Farias R H A, Lin Liu, Rodrigues A R D, et al. Oscilloscope measurement of the synchronous phase shift in an electron storage ring[J]. Physical Review Special Topics—Accelerators and Beams, 2001, 4: 072801.
    [6]
    张宁, 冷用斌, 陈之初, 等. 基于示波器嵌入式IOC技术的逐束团位置监测系统研制[J]. 核技术, 2012, 35(5):337-341. (Zhang Ning, Leng Yongbin, Chen Zhichu, et al. A bunch-by-bunch beam position monitor based on scope embedded IOC[J]. Nuclear Techniques, 2012, 35(5): 337-341
    [7]
    Zhou Yimei, Chen Hanjiao, Cao Sansan, et al. Bunch-by-bunch longitudinal phase monitor at SSRF[J]. Nuclear Science and Techniques, 2018, 29(113): 1-6.
    [8]
    程乾生. 数字信号处理[M]. 北京: 北京大学出版社, 2003.

    Cheng Qiansheng. Digital signal processing. Beijing: Peking University Press, 2003
    [9]
    师博, 徐金强, 孙大睿, 等. 飞秒激光脉冲序列互相关实验及结果分析[J]. 强激光与粒子束, 2009, 21(8):1121-1124. (Shi Bo, Xu Jinqiang, Sun Darui, et al. Experimental research on cross-correlation between pulses of femtosecond laser sequence[J]. High Power Laser and Particle Beams, 2009, 21(8): 1121-1124
    [10]
    Yang Y, Leng Y B, Zhang N. Bunch-by-bunch beam position and charge monitor based on broadband scope in SSRF[C]//Proc of IPAC. 2013: 595-597.
    [11]
    张宁, 杨勇, 冷用斌, 等. 模式独立分析方法在加速器逐束团研究中的应用[J]. 强激光与粒子束, 2014, 26:035103. (Zhang Ning, Yang Yong, Leng Yongbin, et al. Application of model independent analysis-based method to accelerator bunch-by-bunch research[J]. High Power Laser and Particle Beams, 2014, 26: 035103 doi: 10.3788/HPLPB20142603.35103
    [12]
    Wang Chunxi. Measurement and application of betatron modes with MIA[C]//Proc of PAC. 2003: 3407-3409.
    [13]
    Wang Chunxi. Spatial-temporal modes observed in the APS storage ring using MIA[C]//Proc of PAC. 2003: 3410-3412.
    [14]
    Chen Zhichu, Leng Yongbin, Yuan Renxian, et al. Beam position monitor troubleshooting by using principal component analysis in Shanghai Synchrotron Radiation Facility[J]. Nuclear Science and Techniques, 2014, 25: 020102.
    [15]
    Chen Zhichu, Leng Yongbin, Yan Yingbing, et al. Performance evaluation of BPM system in SSRF using PCA method[J]. Chinese Physics C, 2014, 38(7): 077004.
    [16]
    Chen Zhichu, Leng Yongbin, Yuan Renxian, et al. Study of algorithms of phase advance measurement between BPMs and its application in SSRF[J]. Nuclear Science and Techniques, 2013, 24: 010102.
    [17]
    Chen Zhichu, Leng Yongbin, Yuan Renxian, et al. Wakefield measurement using principal component analysis on bunch-by-bunch information during transient state of injection in a storage ring[J]. Physical Review Special Topics—Accelerators and Beams, 2014, 17: 112803. doi: 10.1103/PhysRevSTAB.17.112803
  • Relative Articles

    [1]Ding Jiafan, Li Hang, Jiang Wei, Jing Longfei, Lin Zhiwei, Guo Liang. Implosion experiment of neutron yield in indirectly driven double-metal-shell target[J]. High Power Laser and Particle Beams, 2025, 37(5): 052002. doi: 10.11884/HPLPB202537.240335
    [2]Guo Zhaoyan, Gao Tai, Xiao Jinshui, Tao Mingrui, Li Hongtao, Ma Xun. Pulse neutron measurement of dense plasma focus device based on scintillation detector[J]. High Power Laser and Particle Beams, 2025, 37(4): 044011. doi: 10.11884/HPLPB202537.240404
    [3]Xiao Delong, Wang Xiaoguang, Wang Guanqiong, Mao Chongyang, Sun Shunkai. Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility[J]. High Power Laser and Particle Beams, 2023, 35(2): 022001. doi: 10.11884/HPLPB202335.220253
    [4]Chen Jianfei, Zhou Hongtao, Fang Meihua, Wu Kang, Song Dingyi. Geostationary orbital proton energy spectrum inversion based on machine learning[J]. High Power Laser and Particle Beams, 2023, 35(10): 104002. doi: 10.11884/HPLPB202335.230149
    [5]Li Jie, Dong Pan, Wang Tao, Liu Erxiang, Liu Feixiang, He Jialong, Long Jidong, Zhang Linwen. Design and experimental study of magnetic field regulating ion source[J]. High Power Laser and Particle Beams, 2022, 34(7): 074001. doi: 10.11884/HPLPB202234.210515
    [6]Cui Bo, Zhang Zhimeng, Dai Zenghai, Qi Wei, Deng Zhigang, Huang Hua, He Shukai, Wang WeiWu, Teng Jian, Zhang Bo, Liu Hongjie, Chen Jiabin, Xiao Yunqing, Wu Di, Ma Wenjun, Hong Wei, Su Jingqin, Zhou Weimin, Gu Yuqiu. Experimental study of high yield neutron source based on multi reaction channels[J]. High Power Laser and Particle Beams, 2021, 33(9): 094004. doi: 10.11884/HPLPB202133.210330
    [7]Jiang Shaoen, Dong Yunsong, Huang Tianxuan, Li Sanwei, Tang Qi, Cao Zhurong, Yang Dong, Yang Guohong, Yang Zhenghua, Yi Rongqing, Su Chunxiao, Liu Shenye, Yang Jiamin, Wang Feng, Du Kai, He Zhibing, Zhu Qihua, Hu Dongxia, Zou Shiyang, Zheng Wudi, Ge Fengjun, Zhao Yiqing, Zhang Huasen, Gu Peijun, Liu Jie, Zhu Shaoping, Wang Jianguo, Zhang Baohan, Ding Yongkun. Initial indirect-driven implosion integrated experiment on Shenguang Ⅲ laser facility[J]. High Power Laser and Particle Beams, 2016, 28(08): 080101. doi: 10.11884/HPLPB201628.160111
    [8]Gu Yuqiu, Zhang Feng, Shan Lianqiang, Bi Bi, Chen Jiabin, Wei Lai, Li jin, Song Zifeng, Liu Zhongjie, Yang Zhuhua, Yu Minghai, Cui Bo, Zhang Yi, Liu Hongjie, Liu Dongxiao, Wang Weiwu, Dai Zenghai, Yang Yimeng, Yang Lei, Zhang Faqiang, Wu Xiaojun, Du Kai, Zhou Weimin, Cao Leifeng, Zhang Baohan, Wu Junfeng, Ren Guoli, Cai Hongbo, Wu Shizhong, Cao Lihua, Zhang Hua, Zhou Cangtao, He Xiantu. Initial indirect cone-in-shell fast ignition integrated experiment on Shengguang Ⅱ-updated facility[J]. High Power Laser and Particle Beams, 2015, 27(11): 110101. doi: 10.11884/HPLPB201527.110101
    [9]Wu Jian, Gan Lei, Jiang Yong, Li Junjie, Li Meng, Zou Dehui, Fan Xiaoqiang. Monte Carlo simulations of microstructured semiconductor neutron detectors with trench patterns[J]. High Power Laser and Particle Beams, 2015, 27(08): 084004. doi: 10.11884/HPLPB201527.084004
    [10]Song Zifeng, Tang Qi, Chen Jiabin, Liu Zhongjie, Zhan Xiayu, Deng Caibo. DT neutron yield diagnosis by copper activation on Shenguang-Ⅲ laser facility[J]. High Power Laser and Particle Beams, 2015, 27(11): 112005. doi: 10.11884/HPLPB201527.112005
    [11]Zhou Mi, Wei Biao, Mi Deling, Yang Fan. Simulation study on highly-enriched uranium components with reflector based on 252Cf source-driven noise analysis method[J]. High Power Laser and Particle Beams, 2014, 26(05): 050101. doi: 10.11884/HPLPB201426.050101
    [12]Chen Yu, Jiang Yong, Wu Jian, Fan Xiaoqiang, Bai Lixin, Liu Bo, Li Meng, Rong Ru, Zou Dehui. Thermal neutron response of neutron detector based on SiC[J]. High Power Laser and Particle Beams, 2013, 25(10): 2711-2716. doi: 10.3788/HPLPB20132510.2711
    [13]zhang zhongbing, ouyang xiaoping, chen liang, zhang xianpeng, li hongyun. Detection of high-energy pulsed fission neutrons under high intensity irradiation[J]. High Power Laser and Particle Beams, 2011, 23(12): 48-49.
    [14]zhou changgeng, tang bin, wang xinhua, li yan, lou benchao, wu chunlei, hu yonghong. Application of a removable accelerator to fast neutron imaging[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [15]sheng jia-tian, mou wen-yong, li yun-sheng, gao yao-min, feng jie, chen jia-bin, li meng, feng ting-gui, zhagn li-fa, zeng xian-cai. Influence of non-LTE radiation ablation on imploding neutron yield[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [16]bai li xin, zhang yi yun, wu li ping, xu jia yun, zhao qing chang, sun da cheng, feng jie, wang da hai, yang cun bang, chen yu ting, wen shu huai, zheng zhi jian. Simulation of the γγ coincidence detection efficiency in activation measurment for neutron yield[J]. High Power Laser and Particle Beams, 2004, 16(04): 0- .
    [17]wu shou-dong, chen lin, xu min, yao bin, chen xue-song. Design and application of the double-vacuum bake device[J]. High Power Laser and Particle Beams, 2003, 15(02): 0- .
    [18]li ji, liao hua, zhou jun-lan, yang qin-lao, zhang huan-wen, niu han-ben. Experimental study of neutron oscillograph in ICF[J]. High Power Laser and Particle Beams, 2002, 14(04): 0- .
    [19]feng jie, wang da-hai, yang cun-bang, chen yuting, wen shu-huai, zheng zhi-jian, zhang yi-yun, bai li-xin, wu li-ping, xu jia-yun, zhao qing-chang, sun da-chan. γ-γ coincidence counting system of Cu activstion measurement for fusion yield[J]. High Power Laser and Particle Beams, 2001, 13(05): 0- .
  • Cited by

    Periodical cited type(12)

    1. 周朴,常洪祥,粟荣涛,王小林,马阎星. 光纤激光相干合成的研究历程与发展趋势:基于文献引用的视角(特邀). 中国激光. 2024(01): 440-464 .
    2. 卞奇,薄勇,左军卫,彭钦军. 产生钠导引星星群的钠信标激光合/分束技术. 强激光与粒子束. 2023(04): 128-133 . 本站查看
    3. 李博,陈胜平,李敬岁,宋家鑫,宋锐,韩凯. 线偏振超连续谱研究进展. 光学学报. 2023(17): 262-277 .
    4. 侯涛,张蓉竹. 影响偏振合成效率的主要误差分析. 光学与光电技术. 2019(03): 20-24+65 .
    5. 王彤璐,孙鑫鹏,李晔,史俊锋,张志强,李川,陈园园,韩松. 多孔径激光阵列光束排布模式及误差对相干合成效率影响的研究. 光学技术. 2019(05): 605-611 .
    6. 王桂霞,崔智勇. 基于激光雷达的机器人精准制孔控制系统设计. 激光杂志. 2019(10): 103-106 .
    7. 王铀,赵海,蔡庆春,范盟. 激光远程排弹研究现状与关键技术. 电光与控制. 2018(01): 60-64 .
    8. 侯涛,曹锋利,张蓉竹. 偏振误差对相干偏振合成效率的影响. 激光技术. 2018(04): 572-576 .
    9. 杨昌盛,徐善辉,周军,何兵,杨依枫,渠红伟,赵智德,杨中民. 大功率光纤激光材料与器件关键技术研究进展. 中国科学:技术科学. 2017(10): 1038-1048 .
    10. 李宏勋,张锐. 光纤放大网络及其应用研究进展. 激光与光电子学进展. 2017(01): 17-28 .
    11. 王小林,周朴,粟荣涛,马鹏飞,陶汝茂,马阎星,许晓军,刘泽金. 高功率光纤激光相干合成的现状、趋势与挑战. 中国激光. 2017(02): 9-34 .
    12. 周朴. 高平均功率光纤激光技术基础:(1)概述. 强激光与粒子束. 2017(10): 7-12 . 本站查看

    Other cited types(14)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.3 %FULLTEXT: 20.3 %META: 78.7 %META: 78.7 %PDF: 0.9 %PDF: 0.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %China: 0.8 %China: 0.8 %India: 0.0 %India: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United States: 0.0 %United States: 0.0 %[]: 0.1 %[]: 0.1 %上海: 1.5 %上海: 1.5 %上饶: 0.0 %上饶: 0.0 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %兰州: 0.2 %兰州: 0.2 %北京: 22.2 %北京: 22.2 %十堰: 0.1 %十堰: 0.1 %南京: 0.5 %南京: 0.5 %厦门: 0.0 %厦门: 0.0 %台州: 0.5 %台州: 0.5 %合肥: 0.1 %合肥: 0.1 %吉隆坡: 0.1 %吉隆坡: 0.1 %呼和浩特: 0.0 %呼和浩特: 0.0 %哥伦布: 0.2 %哥伦布: 0.2 %唐山: 0.0 %唐山: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %天津: 0.0 %天津: 0.0 %威海: 0.0 %威海: 0.0 %宣城: 0.1 %宣城: 0.1 %布鲁塞尔: 0.0 %布鲁塞尔: 0.0 %常州: 0.0 %常州: 0.0 %广州: 0.2 %广州: 0.2 %张家口: 0.4 %张家口: 0.4 %扬州: 0.1 %扬州: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 1.4 %杭州: 1.4 %武汉: 0.1 %武汉: 0.1 %法尔肯施泰因: 0.0 %法尔肯施泰因: 0.0 %洛阳: 0.1 %洛阳: 0.1 %深圳: 1.2 %深圳: 1.2 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 0.3 %漯河: 0.3 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 17.0 %芒廷维尤: 17.0 %芝加哥: 0.3 %芝加哥: 0.3 %衢州: 0.1 %衢州: 0.1 %西宁: 44.7 %西宁: 44.7 %西安: 0.1 %西安: 0.1 %贵阳: 0.0 %贵阳: 0.0 %运城: 0.2 %运城: 0.2 %通辽: 0.0 %通辽: 0.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %阿什本: 0.4 %阿什本: 0.4 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他ChinaIndiaTaiwan, ChinaUnited States[]上海上饶中山临汾丹东伊利诺伊州兰州北京十堰南京厦门台州合肥吉隆坡呼和浩特哥伦布唐山嘉兴天津威海宣城布鲁塞尔常州广州张家口扬州晋城普洱杭州武汉法尔肯施泰因洛阳深圳温州湖州漯河石家庄福州秦皇岛绵阳芒廷维尤芝加哥衢州西宁西安贵阳运城通辽邯郸郑州长沙长治阿什本香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (1457) PDF downloads(72) Cited by(26)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return