Bi Bi, Zhou Weimin, Shan Lianqiang, et al. Density diagnosis based on ps-duration-pulse X-ray backlighting for fast ignition compression[J]. High Power Laser and Particle Beams, 2020, 32: 042001. doi: 10.11884/HPLPB202032.200050
Citation: Bi Bi, Zhou Weimin, Shan Lianqiang, et al. Density diagnosis based on ps-duration-pulse X-ray backlighting for fast ignition compression[J]. High Power Laser and Particle Beams, 2020, 32: 042001. doi: 10.11884/HPLPB202032.200050

Density diagnosis based on ps-duration-pulse X-ray backlighting for fast ignition compression

doi: 10.11884/HPLPB202032.200050
  • Received Date: 2020-01-19
  • Rev Recd Date: 2020-03-11
  • Publish Date: 2020-03-06
  • To provide significant parameters for fast ignition coupling efficiency and density diagnosis for higher compression, a ps-duration X-ray backlighter has been produced with ps-duration laser on Shenguang-Ⅱ updated facility. The radiation properties such as backlighting image resolution and the photons arriving at the image plate have been successfully measured. Based on the conformed conditions, density diagnosis of an indirectly-driven fast ignition target using ps-duration backlighting has been carried out. The obtained short-pulse backlighting radiography shows that the imploded shell shape agrees well with that of simulation and the areal density exceeds 50 mg/cm2. The short-pulse backlighting radiography also shows the hydrodynamic instability which might be caused by the asymmetric compression. Further investigations and attempts to improve implosion performance to a higher density are in progress.
  • [1]
    Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Phys Plasmas, 1994, 1(5): 1626-1634. doi: 10.1063/1.870664
    [2]
    Kodama R, Norreys P A, Mima K, et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition[J]. Nature, 2001, 412(6849): 798-802. doi: 10.1038/35090525
    [3]
    谷渝秋, 张锋, 单连强, 等. 神光II升级装置锥壳靶间接驱动快点火集成实验[J]. 强激光与粒子束, 2015, 27:110101. (Gu Yuqiu, Zhang Feng, Shan Lianqiang, et al. Initial indirect cone-in-shell fast ignition integrated experiment on Shenguang II-updated facility[J]. High Power Laser and Particle Beams, 2015, 27: 110101 doi: 10.11884/HPLPB201527.110101
    [4]
    Jarrott L C, Wei M S, McGuffey C, et al. Visualizing fast electron energy transport into laser-compressed high density fast ignition targets[J]. Nature Physics, 2016, 12: 499-504. doi: 10.1038/nphys3614
    [5]
    Theobald W, Solodov A A, Stoeckl C, et al. Initial cone-in-shell fast ignition experiments on OMEGA[J]. Phys Plasmas, 2011, 18: 056305. doi: 10.1063/1.3566082
    [6]
    Stephens R B, Hatchett S P, Turner R E, et al. Implosion of indirectly driven reentrant-cone shell target[J]. Phys Rev Lett, 2003, 91(18): 185001. doi: 10.1103/PhysRevLett.91.185001
    [7]
    Tanaka K A, Kodama R, Mima K, et al. Basic and integrated studies for fast ignition[J]. Phys Plasmas, 2003, 10(5): 1925-1930. doi: 10.1063/1.1567722
    [8]
    Stephens R B, Hatchett S P, Tabak M, et al. Implosion hydrodynamics of fast ignition targets[J]. Phys Plasmas, 2005, 12(5): 056312. doi: 10.1063/1.1896952
    [9]
    Betti R, Zhou C. High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion[J]. Phys Plasmas, 2005, 12(11): 110702. doi: 10.1063/1.2127932
    [10]
    Zhou C D, Theobald W, Betti R, et al. High-ρR implosions for fast-ignition fuel assembly[J]. Phys Rev Lett, 2007, 98(2): 025004. doi: 10.1103/PhysRevLett.98.025004
    [11]
    周维民, 单连强, 吴俊峰, 等. 间接驱动快点火锥壳靶锥体材料燃料混合问题研究[J]. 强激光与粒子束, 2015, 27:032017. (Zhou Weimin, Shan Lianqiang, Wu Junfeng, et al. Material mixing of cone-in-shell targets for indirect-drive fast ignition[J]. High Power Laser and Particle Beams, 2015, 27: 032017 doi: 10.11884/HPLPB201527.032017
    [12]
    He X T, Cai H B, Wu S Z, et al. Physical studies of fast ignition in China[J]. Plasma Physics and Controlled Fusion, 2015, 57: 064003. doi: 10.1088/0741-3335/57/6/064003
    [13]
    毕碧, 单连强, 周维民, 等. 快点火锥壳靶内爆自发光图像数据处理[J]. 强激光与粒子束, 2014, 26:092002. (Bi Bi, Shan Lianqiang, Zhou Weimin, et al. Implosion emission image processing for cone-shell target of fast ignition[J]. High Power Laser and Particle Beams, 2014, 26: 092002 doi: 10.11884/HPLPB201426.092002
    [14]
    Theobald W, Solodov A A, Stoeckl C, et al. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion[J]. Nature Communications, 2014, 5: 5785. doi: 10.1038/ncomms6785
    [15]
    Yi S Z, Zhang Z, Huang Q S, et al. Eight-channel Kirkpatrick-Baez microscope for multiframe X-ray imaging diagnostics in laser plasma experiments[J]. Review of Scientific Instruments, 2016, 87: 103501. doi: 10.1063/1.4963702
  • Relative Articles

    [1]Cai Hongbo, Zhou Cangtao, Jia Qing, Wu Sizhong, He Minqing, Cao Lihua, Chen Mo, Zhang Hua, Liu Jie, Zhu Shaoping, He Xiantu. Laser-driven relativistic electron beam for fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(03): 032001. doi: 10.11884/HPLPB201527.032001
    [2]Tian Chao, Shan Lianqiang, Zhou Weimin, Liu Dongxiao, Bi Bi, Zhang Feng, Wang Weiwu, Gu Yuqiu, Zhang Baohan. Optimization of illumination uniformity of Shenguang Ⅲ prototype facility and its potential application in fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(09): 092010. doi: 10.11884/HPLPB201527.092010
    [3]Gu Yuqiu, Zhang Feng, Shan Lianqiang, Bi Bi, Chen Jiabin, Wei Lai, Li jin, Song Zifeng, Liu Zhongjie, Yang Zhuhua, Yu Minghai, Cui Bo, Zhang Yi, Liu Hongjie, Liu Dongxiao, Wang Weiwu, Dai Zenghai, Yang Yimeng, Yang Lei, Zhang Faqiang, Wu Xiaojun, Du Kai, Zhou Weimin, Cao Leifeng, Zhang Baohan, Wu Junfeng, Ren Guoli, Cai Hongbo, Wu Shizhong, Cao Lihua, Zhang Hua, Zhou Cangtao, He Xiantu. Initial indirect cone-in-shell fast ignition integrated experiment on Shengguang Ⅱ-updated facility[J]. High Power Laser and Particle Beams, 2015, 27(11): 110101. doi: 10.11884/HPLPB201527.110101
    [4]Jiang Baibin, Li Guo, Du Kai, Wei Jianjun, Tong Weichao, Yuan Guanghui, Yang Hong. Effect of micro cutting force on fabrication of Au cone-wire target for fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(09): 092002. doi: 10.11884/HPLPB201527.092002
    [5]Zhou Weimin, Shan Lianqiang, Wu Junfeng, Cai Hongbo, Liu Dongxiao, Liu Hongjie, Bi Bi, Zhang Feng, Wang Weiwu, Wu Fengjuan, Zhu Bin, Wu Yuchi, Wen Xianlun, He Yinglin, Zhou Cangtao, Cao Lihua, Wu Sizhong, Wei Lai, Cao Zhurong, Yuan Zheng, Yang Zhiwen, Gu Yuqiu, Zhang Baohan. Material mixing of cone-in-shell targets for indirect-drive fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(03): 032017. doi: 10.11884/HPLPB201527.032017
    [6]Wu Sizhong, Zhang Hua, Zhou Cangtao, Wu Junfeng, Cai Hongbo, Cao Lihua, He Minqing, Zhu Shaoping, He Xiantu. Energy deposition of fast electrons in fast ignition[J]. High Power Laser and Particle Beams, 2015, 27(03): 032010. doi: 10.11884/HPLPB201527.032010
    [7]Wang Yanbin. New concept and structure of fast ignition target[J]. High Power Laser and Particle Beams, 2015, 27(03): 032032. doi: 10.11884/HPLPB201527.032032
    [8]Bi Bi, Shan Lianqiang, Zhou Weimin, Liu Dongxiao, Cao Leifeng, Gu Yuqiu, Zhang Baohan. Implosion emission image processing for cone-shell target of fast ignition[J]. High Power Laser and Particle Beams, 2014, 26(09): 092002. doi: 10.11884/HPLPB201426.092002
    [9]Liu Meifang, Liu Yiyang, Shi Ruiting, Chen Sufen, Su Lin, Li Jing, Li Jie, Li Bo, Zhang Zhanwen. Effect of oil phase and water phase on wall thickness of polymer microspheres prepared by agitation method[J]. High Power Laser and Particle Beams, 2013, 25(06): 1370-1374. doi: 10.3788/HPLPB20132506.1370
    [10]Wang Wei, Fang Zhiheng, Jia Guo, Wang Ruirong, An Honghai, Xie Zhiyong, Ye Junjian, Zhou Huazhen, Wang Chen, Wu Jiang, Lei Anle, Fu Sizu. Direct-drive cylindrical target compression at Shenguang-Ⅱ laser facility[J]. High Power Laser and Particle Beams, 2013, 25(09): 2303-2306. doi: 10.3788/HPLPB20132509.2303
    [11]Zhou Weimin, Gu Yuqiu, Shan Lianqiang, Liu Hongjie, Liu Dongxiao, Zhang Baohan. Experiment on measurement of fuel symmetry and density of cone-in-shell target for fast ignition[J]. High Power Laser and Particle Beams, 2013, 25(12): 3135-3138. doi: 3135
    [12]Wang Yanbin. Parameter window for fast ignition calculated by Monte-Carlo method[J]. High Power Laser and Particle Beams, 2012, 24(01): 123-128.
    [13]zhou yi, shen chao, zhang junwei, wang xiao, zhou hai. Structure design of high accuracy 2×2 array grating[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [14]chen mo. Collisional effects on hot electron transport in a dense solid carbon thin foil irradiated by ultrahigh intensity lasers[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [15]yang yuchuan, jing feng, li fuquan, wang xiao, huang xiaojun, feng bin, luo hui. Laser driver beam combination for fast ignition[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [16]fang zhiheng, zhang mengjie, wang wei, dong jiaqin, ye junjian, xiong jun, wang ruirong, wang chen, sun jinren, wu jiang, fu sizu, gu yuan, wang shiji. Laser pulse shape optimization for flat target compression[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [17]xiong jun, wang chen, fang zhi-heng, wang rui-rong, wang shi-ji. Influnce of Au cone on distribution of forward hot electrons[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- .
    [18]zuo yan-lei, wei xiao-feng, zhu qi-hua, wang xiao, guo yi, huang zheng, liu hong-jie, ying chun-tong. Design of an arrayed grating compressor based on far-field[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [19]lu rong-hua, han shen-sheng. Model of fast ignition by exploding push[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [20]zuo yan-lei, wei xiao-feng, zhu qi-hua, wang xiao, guo yi, huang zheng, liu hong-jie, ying chun-tong. Coherent addition of ultrashort pulses for the fast-ignition study[J]. High Power Laser and Particle Beams, 2006, 18(12): 0- .
  • Cited by

    Periodical cited type(2)

    1. Xiang Tang,Juexuan Hao,Yin Shi. Electron injection and acceleration in a twisted laser driven by the light fan. High Power Laser Science and Engineering. 2024(06): 156-167 .
    2. 段杭杭,陈华英,刘三秋. 激光偏振状态对磁化等离子体中电磁孤波的影响. 强激光与粒子束. 2022(02): 142-148 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.6 %FULLTEXT: 19.6 %META: 75.6 %META: 75.6 %PDF: 4.8 %PDF: 4.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.6 %其他: 6.6 %其他: 1.1 %其他: 1.1 %Baden: 0.1 %Baden: 0.1 %Belgium: 0.1 %Belgium: 0.1 %Canada: 0.1 %Canada: 0.1 %Central District: 0.1 %Central District: 0.1 %Chiba: 0.1 %Chiba: 0.1 %China: 1.3 %China: 1.3 %Egypt: 0.2 %Egypt: 0.2 %Germany: 0.1 %Germany: 0.1 %India: 0.1 %India: 0.1 %Ireland: 0.2 %Ireland: 0.2 %Italy: 0.1 %Italy: 0.1 %Japan: 0.2 %Japan: 0.2 %Kao-sung: 0.1 %Kao-sung: 0.1 %Poland: 0.1 %Poland: 0.1 %Romania: 0.1 %Romania: 0.1 %Seattle: 0.1 %Seattle: 0.1 %Twickenham: 0.1 %Twickenham: 0.1 %United Kingdom: 0.1 %United Kingdom: 0.1 %United States: 1.3 %United States: 1.3 %Wixom: 0.1 %Wixom: 0.1 %[]: 0.4 %[]: 0.4 %上海: 3.2 %上海: 3.2 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %保定: 0.1 %保定: 0.1 %兰州: 0.1 %兰州: 0.1 %兰开斯特: 0.2 %兰开斯特: 0.2 %加利福尼亚: 0.1 %加利福尼亚: 0.1 %北京: 15.5 %北京: 15.5 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %南充: 0.1 %南充: 0.1 %南平: 0.1 %南平: 0.1 %台州: 0.7 %台州: 0.7 %合肥: 0.8 %合肥: 0.8 %吉林: 0.1 %吉林: 0.1 %圣保罗: 0.1 %圣保罗: 0.1 %圣彼得堡: 0.1 %圣彼得堡: 0.1 %多佛: 0.1 %多佛: 0.1 %天津: 0.2 %天津: 0.2 %太原: 0.2 %太原: 0.2 %安大略: 0.1 %安大略: 0.1 %安康: 0.2 %安康: 0.2 %宜昌: 0.1 %宜昌: 0.1 %宣城: 0.2 %宣城: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.1 %广州: 0.1 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %成都: 1.0 %成都: 1.0 %扬州: 0.1 %扬州: 0.1 %新乡: 0.2 %新乡: 0.2 %昆明: 0.2 %昆明: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %株洲: 0.1 %株洲: 0.1 %桂林: 0.1 %桂林: 0.1 %武威: 0.2 %武威: 0.2 %武汉: 0.1 %武汉: 0.1 %比利时布鲁塞尔: 0.1 %比利时布鲁塞尔: 0.1 %沈阳: 0.3 %沈阳: 0.3 %济南: 0.1 %济南: 0.1 %深圳: 0.6 %深圳: 0.6 %温州: 0.1 %温州: 0.1 %湖州: 0.3 %湖州: 0.3 %漯河: 0.1 %漯河: 0.1 %烟台: 0.1 %烟台: 0.1 %玉林: 0.1 %玉林: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.5 %福州: 0.5 %秦皇岛: 0.1 %秦皇岛: 0.1 %纳什维尔: 0.1 %纳什维尔: 0.1 %绵阳: 1.7 %绵阳: 1.7 %绵阳市涪城区: 0.1 %绵阳市涪城区: 0.1 %绵阳市游仙区: 0.1 %绵阳市游仙区: 0.1 %美国佛罗里达杰克逊维尔: 0.1 %美国佛罗里达杰克逊维尔: 0.1 %美国密歇根: 0.1 %美国密歇根: 0.1 %芒廷维尤: 12.7 %芒廷维尤: 12.7 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.2 %衡水: 0.2 %衢州: 0.2 %衢州: 0.2 %西宁: 38.8 %西宁: 38.8 %西安: 0.5 %西安: 0.5 %贵阳: 0.2 %贵阳: 0.2 %费利蒙: 0.1 %费利蒙: 0.1 %赣州: 0.1 %赣州: 0.1 %运城: 1.4 %运城: 1.4 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.3 %郑州: 0.3 %重庆: 0.6 %重庆: 0.6 %长沙: 0.1 %长沙: 0.1 %长治: 0.2 %长治: 0.2 %阳泉: 0.3 %阳泉: 0.3 %青岛: 0.2 %青岛: 0.2 %马丁内斯: 0.1 %马丁内斯: 0.1 %马鞍山: 0.3 %马鞍山: 0.3 %其他其他BadenBelgiumCanadaCentral DistrictChibaChinaEgyptGermanyIndiaIrelandItalyJapanKao-sungPolandRomaniaSeattleTwickenhamUnited KingdomUnited StatesWixom[]上海东莞中山临汾丹东乌鲁木齐保定兰州兰开斯特加利福尼亚北京十堰南京南充南平台州合肥吉林圣保罗圣彼得堡多佛天津太原安大略安康宜昌宣城平顶山广州库比蒂诺成都扬州新乡昆明晋城普洱杭州株洲桂林武威武汉比利时布鲁塞尔沈阳济南深圳温州湖州漯河烟台玉林盐城石家庄福州秦皇岛纳什维尔绵阳绵阳市涪城区绵阳市游仙区美国佛罗里达杰克逊维尔美国密歇根芒廷维尤芝加哥苏州蚌埠衡水衢州西宁西安贵阳费利蒙赣州运城连云港邯郸郑州重庆长沙长治阳泉青岛马丁内斯马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (1315) PDF downloads(84) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return