Volume 32 Issue 7
Jun.  2020
Turn off MathJax
Article Contents
Liu Jiaxi, Wu Junying, Yang Lijun, et al. Analysis of thermal effect on explosives of single-pulse femtosecond laser ablation[J]. High Power Laser and Particle Beams, 2020, 32: 071007. doi: 10.11884/HPLPB202032.200061
Citation: Liu Jiaxi, Wu Junying, Yang Lijun, et al. Analysis of thermal effect on explosives of single-pulse femtosecond laser ablation[J]. High Power Laser and Particle Beams, 2020, 32: 071007. doi: 10.11884/HPLPB202032.200061

Analysis of thermal effect on explosives of single-pulse femtosecond laser ablation

doi: 10.11884/HPLPB202032.200061
  • Received Date: 2020-03-09
  • Rev Recd Date: 2020-05-20
  • Publish Date: 2020-06-24
  • Femtosecond laser can ablate explosives to generate a high-temperature, high-pressure plasma in extremely short time. The femtosecond laser can be used to precisely process energetic materials or assemblies containing energetic materials. Deep understanding of the thermal effects within the explosives during femtosecond laser ablation is the basis for the development of the safe processing technology of explosives using femtosecond laser. A fluid-solid coupling calculation model of single-pulse femtosecond laser ablation of explosives was established to study the combined thermal effect of the thermal radiation of the plasma and the autothermal reaction of the explosives. The hydrodynamic process of femtosecond laser ablation on TNT was calculated. The results show that in the unablated zones of the explosive, significant thermal effect was detected, and the peak temperature is higher than that of ignition. Due to the small zones affected by the thermal effect and its extremely short duration time, the temperature in the explosive drops quickly, thus the explosive is not ignited.
  • loading
  • [1]
    王清月. 飞秒激光在前沿技术中的应用[M]. 北京: 国防工业出版社, 2015.

    Wang Qingyue. Femtosecond laser application in advanced technologies[M]. Beijing: National Defense Industry Press, 2015
    [2]
    Chin A H, Schoenlein R W, Glover T E, et al. Ultrafast structural dynamics in InSb probed by time-resolved X-ray diffraction[J]. Physical Review Letters, 1999, 83: 336-339. doi: 10.1103/PhysRevLett.83.336
    [3]
    杨建军. 飞秒激光超精细“冷”加工技术及其应用[J]. 激光与光电子学进展, 2004, 41(4):42-52. (Yang Jianjun. Femtosecond laser “cold” micro-machining and its advanced applications[J]. Laser & Optoelectronics Progress, 2004, 41(4): 42-52
    [4]
    Roeske F, Banks R E, Armstronget J P, et al. Laser cutting of pressed explosives [R]. UCRL-JC-128373 Rev 1, 1998.
    [5]
    Roos E V, Benterou J J, Lee R S, et al. Femtosecond laser interaction with energetic materials[C]// Proc of SPIE. 2002, 4670: 415-423.
    [6]
    Palmer J A, Welle E J. An ultrashort pulse laser lathe for axisymmetric micromachining of explosives[C]//Proc of SPIE. 2007: 646015.
    [7]
    Mcgrane S D, Grieco A, Ramos K J, et al. Femtosecond micromachining of internal voids in high explosive crystals for studies of hot spot initiation[J]. Journal of Applied Physics, 2009, 105: 073505. doi: 10.1063/1.3091270
    [8]
    Qiu T Q, Tien C L. Short-pulse laser heating on metals[J]. International Journal of Heat and Mass Transfer, 1992, 35: 719-726. doi: 10.1016/0017-9310(92)90131-B
    [9]
    Michael D P, C. Stuart, P S, Banks, et al. Laser machining of explosives: US6150630[P]. 2000-11-21
    [10]
    Howell J R, Siegel R, Mengüç M P. Thermal radiation heat transfer[M]. New York: Taylor & Francis Group, 2010.
    [11]
    Cheng P. Theory of two-dimensional radiating gas flow by a moment method[J]. AIAA Journal, 1964, 2: 1662-1664. doi: 10.2514/3.2645
    [12]
    Luan Y T, Chyou Y P, Wang T. Numerical analysis of gasification performance via finite-rate model in a cross-type two-stage gasifier[J]. International Journal of Heat and Mass Transfer, 2013, 57: 558-566. doi: 10.1016/j.ijheatmasstransfer.2012.10.026
    [13]
    Isbell R A, Brewster M Q. Optical properties of energetic materials: RDX, HMX, AP, NC/NG, and HTPB[J]. Propellants, Explosives, Pyrotechnics, 1998, 23: 218-224. doi: 10.1002/(SICI)1521-4087(199808)23:4<218::AID-PREP218>3.0.CO;2-A
    [14]
    Aduev B P, Belokurov G M, Nurmukhametov D R, et al. Studying the optical properties of hexogen–aluminum composites[J]. Optics & Spectroscopy, 2018, 125(5): 632-639.
    [15]
    MeGuire R R, Tarver C M. Chemical decomposition models for the thermal explosion of confined HMX, TATB, RDX and TNT explosive[C]//Proceeding of the 7th International Detonation Symposium. 1981.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views (2016) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return