Volume 32 Issue 7
Jun.  2020
Turn off MathJax
Article Contents
Zhao Hailong, Dong Ye, Zhou Haijing, et al. 3D particle-in-cell simulations of current convolute structure on pulsed power facility using NEPTUNE3D[J]. High Power Laser and Particle Beams, 2020, 32: 075005. doi: 10.11884/HPLPB202032.200066
Citation: Zhao Hailong, Dong Ye, Zhou Haijing, et al. 3D particle-in-cell simulations of current convolute structure on pulsed power facility using NEPTUNE3D[J]. High Power Laser and Particle Beams, 2020, 32: 075005. doi: 10.11884/HPLPB202032.200066

3D particle-in-cell simulations of current convolute structure on pulsed power facility using NEPTUNE3D

doi: 10.11884/HPLPB202032.200066
  • Received Date: 2020-03-14
  • Rev Recd Date: 2020-05-20
  • Publish Date: 2020-06-24
  • As electron transportation in vacuum convolute structure plays a quite important role during current converging process on pulsed power facility, fully three-dimensional (3D) particle-in-cell (PIC) simulations are performed using NEPTUNE3D code to explore this process. Simulated region (34 cm×34 cm×18 cm) including the double post-hole convolute (DPHC) structure is modeled and calculated with the help of high-performance computing clusters. The calculated results including the distributions of magnetic field nulls, trajectory of electron transportation, electrons lost on surfaces of anode posts, and time-integrated electron energy deposition damaging around the magnetic null areas between posts and holes, agree with the experimental ones from the large-scale pulsed power facility. According to the calculations, maximum current loss (437 kA, 27%) happens at early time (about 15 ns), while the loss drops dramatically to only 0.48% (34 kA) when current peaks at 53 ns (7.12 MA), at this time the magnetic insulations of transforming lines have been fully established, which also proves that the DPHC structure has especially high efficiency on high-density current converging.
  • loading
  • [1]
    Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 5: 056303.
    [2]
    McBride R D, Martin M R, Lemke R W, et al. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion[J]. Physics of Plasmas, 2013, 20: 056309. doi: 10.1063/1.4803079
    [3]
    Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical Review Letters, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [4]
    王勐, 关永超, 宋盛义, 等. PTS装置分层真空轴向绝缘堆设计[J]. 强激光与粒子束, 2010, 22(4):777-781. (Wang Meng, Guan Yongchao, Song Shengyi, et al. Design of PTS vacuum insulator stack[J]. High Power Laser and Particle Beams, 2010, 22(4): 777-781 doi: 10.3788/HPLPB20102204.0777
    [5]
    丰树平, 李洪涛, 谢卫平, 等. Z箍缩初级实验平台模块样机[J]. 强激光与粒子束, 2009, 21(3):463-466. (Feng Shuping, Li Hongtao, Xie Weiping, et al. Development of prototype module of Z-pinch primary test stand[J]. High Power Laser and Particle Beams, 2009, 21(3): 463-466
    [6]
    Zhao Hailong, Deng Jianjun, Wang Ganghua, et al. Load optimal design for a primary test stand facility based on a zero-dimensional load model[J]. Chinese Physics B, 2011, 20: 105201. doi: 10.1088/1674-1056/20/10/105201
    [7]
    Spielman R B, Corcoran P, Fockler J, et al. A double post-hole convolute diode for Z-pinch experiments on Saturn[C]//Proceedings of the 7th International Pulsed Power Conference. 1989: 445-448.
    [8]
    PointonT D, Stygar W A, Spielman R B, et al. Particle-in-cell simulations of electron flow in the post-hole convolute of the Z accelerator[J]. Physics of Plasmas, 2001, 8(10): 4534-4544. doi: 10.1063/1.1401118
    [9]
    Peterson D L, Bowers R L, Matuska W, et al. Insights and applications of two-dimensional simulations to Z-pinch experiments[J]. Physics of Plasmas, 1999, 6(5): 2178-2184. doi: 10.1063/1.873469
    [10]
    Jennings C A, Cuneo M E, Waisman E M, et al. Simulations of the implosion and stagnation of compact wire arrays[J]. Physics of Plasmas, 2010, 17: 092703. doi: 10.1063/1.3474947
    [11]
    Madrid E A, Rose D V, Welch D R, et al. Steady-state modeling of current loss in a post-hole convolute driven by high power magnetically insulated transmission lines[J]. Physical Review Special Topics—Accelerators and Beams, 2013, 16: 120401. doi: 10.1103/PhysRevSTAB.16.120401
    [12]
    Rose D V, Welch D R, Madrid E A, et al. Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator[J]. Physical Review Special Topics—Accelerators and Beams, 2010, 13: 010402. doi: 10.1103/PhysRevSTAB.13.010402
    [13]
    Rose D V, Welch D R, Hughes T P, et al. Plasma evolution and dynamics in high-power vacuum-transmission-line post-hole convolutes[J]. Physical Review Special Topics—Accelerators and Beams, 2008, 11: 060401. doi: 10.1103/PhysRevSTAB.11.060401
    [14]
    董烨, 陈军, 杨温渊, 等. 3维全电磁粒子模拟大规模并行程序NEPTUNE[J]. 强激光与粒子束, 2011, 23(6):1607-1615. (Dong Ye, Chen Jun, Yang Wenyuan, et al. Massively parallel code named NEPTUNE for 3D fully electromagnetic and PIC simulations[J]. High Power Laser and Particle Beams, 2011, 23(6): 1607-1615 doi: 10.3788/HPLPB20112306.1607
    [15]
    董烨, 杨温渊, 陈军, 等. 并行3维全电磁位子模拟软件NEPTUNE的外加磁场模块设计[J]. 强激光与粒子束, 2010, 22(3):664-670. (Dong Ye, Yang Wenyuan, Chen Jun, et al. Design of external magnetic field loading modules for 3D fully electromagnetic and PIC simulation parallel code NEPTUNE[J]. High Power Laser and Particle Beams, 2010, 22(3): 664-670 doi: 10.3788/HPLPB20102203.0664
    [16]
    陈军, 莫则尧, 董烨, 等. 3维全电磁粒子软件NEPTUNE中的并行计算方法[J]. 强激光与粒子束, 2011, 23(11):2999-3002. (Chen Jun, Mo Zeyao, Dong Ye, et al. Parallelization methods in 3D fully electromagnetic code NEPTUNE[J]. High Power Laser and Particle Beams, 2011, 23(11): 2999-3002 doi: 10.3788/HPLPB20112311.2999
    [17]
    Rose D V, Welch D R, Miller C L, et al. 107 A load-current B-dot monitor simulations, design, and performance[J]. Physical Review Special Topics—Accelerators and Beams, 2010, 13: 040401. doi: 10.1103/PhysRevSTAB.13.040401
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (1216) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return