Li Chao, Lu Junyong, Jiang Hanhong, et al. Comparison of charging methods of multilevel hybrid energy storage for electromagnetic launch[J]. High Power Laser and Particle Beams, 2015, 27: 075005. doi: 10.11884/HPLPB201527.075005
Citation: Chen Xueqian, Shen Zhanpeng, Elin Zhongyang, et al. Dynamic modeling on a linear rolling guide based on thin layer element and spring element[J]. High Power Laser and Particle Beams, 2020, 32: 072001. doi: 10.11884/HPLPB202032.200069

Dynamic modeling on a linear rolling guide based on thin layer element and spring element

doi: 10.11884/HPLPB202032.200069
  • Received Date: 2020-03-18
  • Rev Recd Date: 2020-04-21
  • Publish Date: 2020-06-24
  • The guide-slider joint of the transmission mechanism with a long stroke has a great effect on the dynamic characteristic of the structure. Aiming at the dynamic modeling on the joint part of the LM linear rolling guide in some large laser facility, the finite element (FE) model of the transmission mechanism with a long stroke is established based on the thin layer element and spring element. The modulus of the thin element and the stiffness of the spring element are identified by the model updating method and the modal experimental results. After the model update, the maximal error of the first three modal frequencies between simulation and experiment is 2.29%, and the maximal error of the point’s displacement response between simulation and experiment is 7.61% under the ambient vibration. The results of simulation and experiment are consistent, which shows that the model is effective and reasonable. The study provides a theoretical basis for the high confidence dynamic modeling on other structure with such a the joint.
  • [1]
    屈重年, 伍良生, 肖毅川, 等. 机床导轨技术研究综述[J]. 制造技术与机床, 2012(1):31-36. (Qu Chongnian, Wu Liangsheng, Xiao Yichuan, et al. Summary of guide way technology research on machine tools[J]. Manufacturing Technology & Machine Tool, 2012(1): 31-36
    [2]
    Zhang G P, Huang Y M, Shi W H, et al. Predicting dynamic behaviors of a whole machine tool structure based on computer-aided engineering[J]. International Journal of Machine Tools and Manufacture, 2003, 43(7): 699-706. doi: 10.1016/S0890-6955(03)00026-9
    [3]
    Wu J S S, Chang J C, Hung J P. The effect of contact interface on dynamic characteristics of composite structures[J]. Mathematics and Computers in Simulation, 2007, 74(6): 454-467. doi: 10.1016/j.matcom.2006.07.003
    [4]
    Wu J S S, Chang J C, Tsai G A, et al. The effect of bending loads on the dynamic behaviors of a rolling guide[J]. Journal of Mechanical Science and Technology, 2012, 26(3): 671-680. doi: 10.1007/s12206-011-1228-8
    [5]
    Hung J P. Load effect on the vibration characteristics of a stage with rolling guides[J]. Journal of Mechanical Science and Technology, 2009, 23(1): 89-99. doi: 10.1007/s12206-008-0925-4
    [6]
    蒋书运, 祝书龙. 带滚珠丝杠副的直线导轨结合部动态刚度特性[J]. 机械工程学报, 2010, 46(1):92-99. (Jiang Shuyun, Zhu Shulong. Dynamic characteristic parameters of linear guide way joint with ball screw[J]. Journal of Mechanical Engineering, 2010, 46(1): 92-99 doi: 10.3901/JME.2010.01.092
    [7]
    孙伟, 孔祥希, 汪博, 等. 直线滚动导轨的 Hertz 接触建模及接触刚度的理论求解[J]. 工程力学, 2013, 30(7):230-234. (Sun Wei, Kong Xiangxi, Wang Bo, et al. Contact modeling and analytical solution of contact stiffness by Hertz theory for the linear rolling guide system[J]. Engineering Mechanics, 2013, 30(7): 230-234
    [8]
    王民, 乐兵兵, 裴二阳. 基于Hertz 接触的滚珠直线导轨副接触刚度建模与分析[J]. 北京工业大学学报, 2015, 41(8):1128-1133. (Wang Min, Le Bingbing, Pei Eryang. Contact stiffness modeling and analysis of linear ball guides based on Hertz contact theory[J]. Journal of Beijing University of Technology, 2015, 41(8): 1128-1133
    [9]
    张巍, 王民, 孙乐乐. 考虑预紧力和接触角变化的直线滚动导轨副刚度建模与分析[J]. 北京工业大学学报, 2018, 44(1):56-63. (Zhang Wei, Wang Min, Sun Lele. Stiffness modeling and analysis considering influences of preload and contact angle of a linear rolling guide[J]. Journal of Beijing University of Technology, 2018, 44(1): 56-63
    [10]
    Wang J H. Experimental identification of mechanical joint parameters[J]. Journal of Vibration and Acoustics, 1991, 113: 28-36. doi: 10.1115/1.2930151
    [11]
    Ohta H, Hayashi E. Vibration of linear guide way type recirculating linear ball bearing[J]. Journal of Sound and Vibration, 2000, 235(5): 847-861. doi: 10.1006/jsvi.2000.2950
    [12]
    张宇, 廖伯瑜. 机床结合部参数的有效识别方法[J]. 昆明理工大学学报, 1998, 23(2):36-41. (Zhang Yu, Liao Boyu. The efficient identification method of joint parameters of machine tools[J]. Journal of Kunming University of Science and Technology, 1998, 23(2): 36-41
    [13]
    毛宽民, 邢满禧, 李斌, 等. 滚动直线导轨副可动结合部动力学建模[J]. 华中科技大学学报:自然科学版, 2016, 44(7):81-85. (Mao Kuanmin, Xing Manxi, Li Bin, et al. Dynamic modeling for movable joint of rolling linear guide[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2016, 44(7): 81-85
    [14]
    田红亮, 刘芙蓉, 方子帆, 等. 引入各向同性虚拟材料的固定结合部模型[J]. 振动工程学报, 2013, 26(4):561-573. (Tian Hongliang, Liu Furong, Fang Zifan, et al. Immovable joint surface’s model using isotropic virtual material[J]. Journal of Vibration Engineering, 2013, 26(4): 561-573 doi: 10.3969/j.issn.1004-4523.2013.04.013
    [15]
    张学良, 范世荣, 温淑花, 等. 基于等效横观各向同性虚拟材料的固定结合部建模方法[J]. 机械工程学报, 2017, 53(15):141-147. (Zhang Xueliang, Fan Shirong, Wen Shuhua, et al. Modeling method of fixed joint interfaces equivalent transversely isotropic virtual material[J]. Journal of Mechanical Engineering, 2017, 53(15): 141-147 doi: 10.3901/JME.2017.15.141
    [16]
    Tabatabaie M, Sommer S C. Analysis of soil-structure interaction due to ambient vibration[R]. UCRL-JC-130342, 1998.
    [17]
    陈学前, 徐元利. 柔性基础对ICF装置稳定性的影响[J]. 强激光与粒子束, 2011, 23(6):1569-1573. (Chen Xueqian, Xu Yuanli. Studying on the influence of flexible foundation on the stability of ICF facility[J]. High Power Laser and Particle Beams, 2011, 23(6): 1569-1573 doi: 10.3788/HPLPB20112306.1569
  • Relative Articles

    [1]Zhang Tianyang, Huang Tao, Cong Peitian, Luo Weixi, Yin Jiahui, Zhai Rongxiao. Assembly design of switch and capacitor for fast linear transformer driver primary discharge unit[J]. High Power Laser and Particle Beams, 2024, 36(11): 115015. doi: 10.11884/HPLPB202436.240291
    [2]Lu Honglin, Wu Xinjie, Zhang Debin, Qu Chengzhi, Zhang Zhongsong, Zhang Yu. Modeling and analysis of power processing unit based on secondary-side LLC resonant converter[J]. High Power Laser and Particle Beams, 2024, 36(2): 025021. doi: 10.11884/HPLPB202436.230171
    [3]Xie Xiangyu, Wang Peng, Deng Ying, Zhou Kainan, Feng Guoying. Ray tracing model of digital holography with single element interference[J]. High Power Laser and Particle Beams, 2023, 35(5): 059002. doi: 10.11884/HPLPB202335.220396
    [4]Rong Fan, Zhong Longquan, Liu Qiang, Yan Liping, Zhao Xiang. Modeling and statistical analysis of distribution parameters of random cable bundles based on image recognition technology[J]. High Power Laser and Particle Beams, 2021, 33(5): 053002. doi: 10.11884/HPLPB202133.210007
    [5]Shen Yi, Zhang Huang, Liu Yi, Wang Wei, Ye Mao, Xia Liansheng, Shi Jinshui, Zhang Linwen, Deng Jianjun. Circuit coupling and decoupling between accelerating units of dielectric wall linear accelerator[J]. High Power Laser and Particle Beams, 2016, 28(04): 045003. doi: 10.11884/HPLPB201628.125003
    [6]Luo Shiwen, Zuo Duluo, Wang Xinbing. Kinetic simulation of discharge excited ArF excimer laser and parameter analysis[J]. High Power Laser and Particle Beams, 2015, 27(08): 081006. doi: 10.11884/HPLPB201527.081006
    [7]Huang Yanhua, Song Chengwei, Zhang Junjie, Sun Tao. Molecular dynamics modelling and simulating of femtosecond laser ablation of polymers[J]. High Power Laser and Particle Beams, 2014, 26(12): 124102. doi: 10.11884/HPLPB201426.124102
    [8]Cui Ding, Su Youbin, Cui Yunjun, Xian Yuqiang, Zhang Wei. Hybrid modeling method based on solid element and shell element in microwave structure[J]. High Power Laser and Particle Beams, 2013, 25(S0): 106-110.
    [9]Hao Qingsong, Ding ZHenjie, Fan Juping, Yu Jianguo, Yuan Xuelin, Pan Yafeng, Hu Long, Fang Xu, Wang Gang, Su Jiancang. Design of primary unit of high repetition frequency pulsed power generator[J]. High Power Laser and Particle Beams, 2012, 24(10): 2479-2482. doi: 10.3788/HPLPB20122410.2479
    [10]Zhang Xianpeng, Zhang Mei, Sheng Liang, Ouyang Xiaoping. Simulation research of neutron scatter camera with five units[J]. High Power Laser and Particle Beams, 2012, 24(10): 2464-2468. doi: 10.3788/HPLPB20122410.2464
    [11]Chen Shaowu, Zhang Jianmin, Yuwen Cuilei, Feng Gang. 中红外高能激光探测单元[J]. High Power Laser and Particle Beams, 2012, 24(06): 1306-1310. doi: 10.3788/HPLPB20122406.1306
    [12]Wang Qingfeng, Liu Qingxiang, Li Xiangqiang, Zhang Zhengquan, Xu Yuancan, Hu Kesong. Double-cell experimental study of linear transformer drivers[J]. High Power Laser and Particle Beams, 2012, 24(04): 789-792. doi: 10.3788/HPLPB20122404.0789
    [13]he dayong, chi yunlong, . Design and multi-cell test of Marx solid-state modulator[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [14]he dayong, chi yunlong, . Marx solid-stage modulator cell for International Linear Collider[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [15]chen minsun, jiang houman, liu zejin. Determination of thermal decomposition kinetic parameters of glass-fiber/epoxy composite[J]. High Power Laser and Particle Beams, 2010, 22(09): 0- .
    [16]yang peng-ling, feng guo-bin, wang qun-shu, yan yan, cheng jian-ping. Design and implement of detecting module for mid-infrared laser power density measurement[J]. High Power Laser and Particle Beams, 2008, 20(08): 0- .
    [17]li zhi-hui, ratzinger u. Optimization of room temperature CH-cavity with cell-cavity approximation[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [18]xia ming-he, li hong-tao, yao bin, feng shu-ping, wang yu-juan, meng wei-tao, wei bing, he an, ji ce, tian qing, fu zhen, ding sheng, ren jing, qing yan-ling, xie wei-ping. Investigation of pulse forming line section of pulse power machine[J]. High Power Laser and Particle Beams, 2007, 19(09): 0- .
    [19]tang chuan xiang, tian kai, chen huai bi, li quan feng, jiang zhan feng, wang ying, xu yi yong. Beam dynamics researches on micropulse electron gun[J]. High Power Laser and Particle Beams, 2003, 15(08): 0- .
    [20]yu hai-jun, shi jin-shui. Dynamics behavior of backstreaming ions[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
  • Cited by

    Periodical cited type(1)

    1. 王安鑫,王梓豪,麻惠洲,李春华,聂小军,陈佳鑫,朱东辉,余洁冰,贺华艳,王广源,于永积,刘仁洪,张俊嵩,邱瑞阳,刘磊,康玲. 高能光源束流位置探测器支撑架结构优化设计. 强激光与粒子束. 2021(04): 90-98 . 本站查看

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.6 %FULLTEXT: 29.6 %META: 68.7 %META: 68.7 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %其他: 0.1 %其他: 0.1 %China: 0.4 %China: 0.4 %India: 0.0 %India: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.1 %[]: 0.1 %三明: 0.0 %三明: 0.0 %上海: 1.7 %上海: 1.7 %东莞: 0.0 %东莞: 0.0 %东营: 0.0 %东营: 0.0 %中山: 0.0 %中山: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %休斯敦: 0.0 %休斯敦: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %兴安盟: 0.1 %兴安盟: 0.1 %北京: 19.1 %北京: 19.1 %十堰: 0.0 %十堰: 0.0 %南京: 0.2 %南京: 0.2 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %厦门: 0.0 %厦门: 0.0 %台州: 0.2 %台州: 0.2 %合肥: 0.0 %合肥: 0.0 %吕梁: 0.0 %吕梁: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %嘉义: 0.2 %嘉义: 0.2 %大连: 0.3 %大连: 0.3 %天津: 0.5 %天津: 0.5 %安康: 0.2 %安康: 0.2 %宣城: 0.1 %宣城: 0.1 %岳阳: 0.0 %岳阳: 0.0 %布达佩斯: 0.0 %布达佩斯: 0.0 %常州: 0.1 %常州: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 0.1 %张家口: 0.1 %惠州: 0.0 %惠州: 0.0 %成都: 0.4 %成都: 0.4 %扬州: 0.2 %扬州: 0.2 %文昌: 0.0 %文昌: 0.0 %斯特灵: 0.0 %斯特灵: 0.0 %新乡: 0.0 %新乡: 0.0 %昆明: 0.0 %昆明: 0.0 %晋城: 0.1 %晋城: 0.1 %普洱: 0.0 %普洱: 0.0 %杜伊斯堡: 0.0 %杜伊斯堡: 0.0 %杭州: 1.3 %杭州: 1.3 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %济南: 0.2 %济南: 0.2 %海口: 0.0 %海口: 0.0 %深圳: 0.1 %深圳: 0.1 %温州: 0.0 %温州: 0.0 %湖州: 0.2 %湖州: 0.2 %漯河: 0.2 %漯河: 0.2 %瓜达拉哈拉: 0.1 %瓜达拉哈拉: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %绵阳: 0.5 %绵阳: 0.5 %芒廷维尤: 21.5 %芒廷维尤: 21.5 %芝加哥: 0.0 %芝加哥: 0.0 %苏州: 0.3 %苏州: 0.3 %莱芜: 0.2 %莱芜: 0.2 %衢州: 0.7 %衢州: 0.7 %西宁: 40.9 %西宁: 40.9 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.9 %运城: 0.9 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.2 %郑州: 0.2 %重庆: 0.4 %重庆: 0.4 %金华: 0.0 %金华: 0.0 %镇江: 0.0 %镇江: 0.0 %长春: 0.0 %长春: 0.0 %长沙: 0.5 %长沙: 0.5 %长治: 0.0 %长治: 0.0 %其他其他ChinaIndiaUnited States[]三明上海东莞东营中山临汾丹东休斯敦佛山保定兴安盟北京十堰南京博阿努瓦厦门台州合肥吕梁呼和浩特哥伦布嘉义大连天津安康宣城岳阳布达佩斯常州广州张家口惠州成都扬州文昌斯特灵新乡昆明晋城普洱杜伊斯堡杭州武汉沈阳济南海口深圳温州湖州漯河瓜达拉哈拉石家庄秦皇岛绵阳芒廷维尤芝加哥苏州莱芜衢州西宁西安贵阳运城邯郸郑州重庆金华镇江长春长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (1431) PDF downloads(36) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return