Citation: | Kan Mingxian, Duan Shuchao, Wang Ganghua, et al. Structure coefficient in magnetically driven flyer plate experiment[J]. High Power Laser and Particle Beams, 2020, 32: 085002. doi: 10.11884/HPLPB202032.200072 |
[1] |
Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. Journal of Applied Physics, 2003, 94(7): 4420-4431. doi: 10.1063/1.1604967
|
[2] |
Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. Journal of Applied Physics, 2005, 98: 073530. doi: 10.1063/1.2084316
|
[3] |
Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6): 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
|
[4] |
Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Physical Review Letters, 2001, 87: 225501. doi: 10.1103/PhysRevLett.87.225501
|
[5] |
Knudson M D, Hanson D L, Bailey J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa[J]. Physical Review Letters, 2003, 90: 035505. doi: 10.1103/PhysRevLett.90.035505
|
[6] |
Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Physical Review B, 2004, 69: 144209. doi: 10.1103/PhysRevB.69.144209
|
[7] |
Reisman D B, Toor A, Cauble R C. Magnetically driven isentropic compression experiments on the Z accelerator[J]. Journal of Applied Physics, 2001, 89(3): 1625-1633. doi: 10.1063/1.1337082
|
[8] |
Lemke R W, Knudson M D, Hall C A, et al. Characterization of magnetically accelerated flyer plates[J]. Physics of Plasmas, 2003, 10(4): 1092-1099. doi: 10.1063/1.1554740
|
[9] |
Davis J P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multimegabar pressure: application to tantalum[J]. Journal of Applied Physics, 2014, 116: 204903. doi: 10.1063/1.4902863
|
[10] |
Kan Mingxian, Zhang Zhaohui, Xiao Bo, et al. Simulation of magnetically driven flyer plate experiments with an improved magnetic field boundary formula[J]. High Energy Density Physics, 2018, 26: 38-43. doi: 10.1016/j.hedp.2017.12.002
|
[11] |
阚明先, 王刚华, 肖波, 等. 磁驱动单侧飞片实验的数值模拟研究[J]. 爆炸与冲击, 2020, 40:033304. (Kan Mingxian, Wang Ganghua, Xiao Bo, et al. Simulation study of magnetically driven one-sided flyer plate experiment[J]. Explosion and Shock Waves, 2020, 40: 033304 doi: 10.11883/bzycj-2019-0103
|
[12] |
Deng Jianjun, Xie Weiping, Feng Shuping, et al. Initial performance of the Primary Test Stand[J]. IEEE TPS, 2013, 41(10): 2580-2583.
|
[13] |
杨龙, 王刚华, 阚明先, 等. 基于MDSC程序的Z箍缩内爆单温和三温模拟分析[J]. 高压物理学报, 2016, 30(1):64-70. (Yang Long, Wang Ganghua, Kan Mingxian, et al. A numerical simulation analysis of mono-temperature and tri-temperature models by MDSC program in Z-pinch implosion[J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 64-70 doi: 10.11858/gywlxb.2016.01.010
|
[14] |
阚明先, 张朝辉, 段书超, 等. “聚龙一号”装置上磁驱动铝飞片实验的数值模拟[J]. 强激光与粒子束, 2015, 27:125001. (Kan Mingxian, Zhang Zhaohui, Duan Shuchao, et al. Numerical simulation of magnetically driven aluminum flyer plate on PTS accelerator[J]. High Power Laser and Particle Beams, 2015, 27: 125001 doi: 10.11884/HPLPB201527.125001
|
[15] |
王贵林, 张朝辉, 郭帅, 等. 聚龙一号装置上铜的准等熵压缩线实验测量研究[J]. 强激光与粒子束, 2016, 28:055010. (Wang Guilin, Zhang Zhaohui, Guo Shuai, et al. Experimental measured of quasi-isentrope for copper on PTS[J]. High Power Laser and Particle Beams, 2016, 28: 055010 doi: 10.11884/HPLPB201628.055010
|
[16] |
阚明先, 杨龙, 段书超, 等. 聚龙一号装置上磁驱动铝飞片发射实验的数值分析与再设计[J]. 爆炸与冲击, 2017, 37(5):793-798. (Kan Mingxian, Yang Long, Duan Shuchao, et al. Numerical analysis and design of magnetically driven aluminum flyer plate on PTS accelerator[J]. Explosion and Shock Waves, 2017, 37(5): 793-798 doi: 10.11883/1001-1455(2017)05-0793-06
|
[17] |
阚明先, 蒋吉昊, 王刚华, 等. 套筒内爆ALE方法二维MHD数值模拟[J]. 四川大学学报, 2007, 44(1):91-96. (Kan Mingxian, Jiang Jihao, Wang Ganghua, et al. ALE simulation 2D MHD for liner[J]. Journal of Sichuan University, 2007, 44(1): 91-96
|
[18] |
阚明先, 王刚华, 赵海龙, 等. 磁驱动飞片二维磁流体力学数值模拟[J]. 强激光与粒子束, 2013, 25(8):2137-2141. (Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Two dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates[J]. High Power Laser and Particle Beams, 2013, 25(8): 2137-2141 doi: 10.3788/HPLPB20132508.2137
|
[19] |
阚明先, 王刚华, 肖波, 等. 二维弹塑性磁流体力学数值模拟[J]. 强激光与粒子束, 2018, 30:065002. (Kan Mingxian, Wang Ganghua, Xiao Bo, et al. Two dimensional elasto-plastic MHD numerical simulation[J]. High Power Laser and Particle Beams, 2018, 30: 065002 doi: 10.11884/HPLPB201830.170306
|
[20] |
阚明先, 段书超, 张朝辉, 等. 二维磁驱动数值模拟程序MDSC2的验证与确认[J]. 强激光与粒子束, 2019, 31:065001. (Kan Mingxian, Duan Shuchao, Zhang Zhaohui, et al. Verification and validation of two dimensional magnetically driven simulation code MDSC2[J]. High Power Laser and Particle Beams, 2019, 31: 065001 doi: 10.11884/HPLPB201931.180300
|
[21] |
阚明先, 王刚华, 赵海龙, 等. 金属电阻率模型[J]. 爆炸与冲击, 2013, 33(3):282-286. (Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Electrical resistivity model for metals[J]. Explosion and shock waves, 2013, 33(3): 282-286 doi: 10.3969/j.issn.1001-1455.2013.03.010
|