Dai Tao, Huang Hongwen, Ma Jimin. Transient calculation of natural circulation for pool-type research reactor[J]. High Power Laser and Particle Beams, 2018, 30: 086001. doi: 10.11884/HPLPB201830.180009
Citation: Ni Xiaolong, Zhu Xufang, Yu Xin, et al. Laser beam coherence and divergence angle complex controlling technique[J]. High Power Laser and Particle Beams, 2020, 32: 071008. doi: 10.11884/HPLPB202032.200078

Laser beam coherence and divergence angle complex controlling technique

doi: 10.11884/HPLPB202032.200078
  • Received Date: 2020-03-25
  • Rev Recd Date: 2020-06-09
  • Publish Date: 2020-06-24
  • To reduce the complexity and cost of partially coherent optical system, increase the convenience of partially coherent laser beam application, in this paper, we presents a method to control the coherence and divergence angle of laser beam complexly, using a liquid crystal spatial light modulator (LC-SLM). First, we introduce the basic theory and method to control the coherence and divergence angle of laser beam complexly using an LC-SLM; then, we put forward the experiment to test the coherence and divergence angle controlling accuracy. The experiment results show that, for a partially coherent laser beam with the coherence and divergence angle of 0.9 mm, 7.5 mrad and 1.5 mm, 3.8 mrad, the error of coherence is less than 5%, the root-mean-square errors of the degree of coherence are 0.027 386 and 0.031 314, and the peak-to-valley values are 0.084 658 and 0.089 103 respectively; the error of divergence angle is less than 5%, the root-mean-square errors of the divergence angle are 0.022 478 and 0.023 186, and the peak-to-valley values are 0.081 201 and 0.092 130 respectively. This method can control degree of coherence and divergence angle with high accuracy.
  • [1]
    Korotkova O, Andrews L C, Phillips R L. Speckle propagation through atmospheric turbulence: Effects of a random phase screen at the source[C]//International Symposium on Optical Science and Technology. 2002: 98-109.
    [2]
    Korotkova O, Andrews L C, Phillips R L. Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom[J]. Optical Engineering, 2016, 43(2): 341.
    [3]
    Lee I E, Ghassemlooy Z, Ng W P, et al. Joint optimization of partially coherent Gaussian beam for free-space optical communication over turbulent channels with pointing errors[J]. Optics Letters, 2013, 38(3): 350-352. doi: 10.1364/OL.38.000350
    [4]
    Borah D K, Voelz D G. Spatially partially coherent beam parameter optimization for free space optical communications[J]. Opt Express, 2010, 18(20): 20746-20758. doi: 10.1364/OE.18.020746
    [5]
    柯熙政, 张宇. 部分相干光在大气湍流中的光强闪烁效应[J]. 光学学报, 2015, 35:0106001. (Ke Xizheng, Zhang Yu. Light intensity scintillation effect of partially coherent light in atmospheric turbulence[J]. Acta Photonica Sinica, 2015, 35: 0106001
    [6]
    李宜璋, 杨晖, 李然, 等. 激光散斑血流成像系统中的光源相干性[J]. 光学 精密工程, 2019, 27(10):2127-2135. (Li Yizhang, Yang Hui, Li Ran, et al. Coherence of light source in laser speckle blood flow imaging system[J]. Optics and Precision Engineering, 2019, 27(10): 2127-2135 doi: 10.3788/OPE.20192710.2127
    [7]
    柯熙政, 韩美苗, 王明军, 等. 部分相干光在大气湍流中斜程传输路径上的展宽与漂移[J]. 光子学报, 2015, 44:0306001. (Ke Xizheng, Han Meimiao, Wang Mingjun, et al. Spreading and wander of partially coherent beam through atmospheric turbulence in a slanted path[J]. Acta Photonica Sinica, 2015, 44: 0306001 doi: 10.3788/gzxb20154403.0306001
    [8]
    Jenkins M H, Long J M, Gaylord T K. Multifilter phase imaging with partially coherent light[J]. Appl Opt, 2014, 53(16): D29-D39. doi: 10.1364/AO.53.000D29
    [9]
    Deng P, Kavehrad M, Liu Z, et al. Capacity of MIMO free space optical communications using multiple partially coherent beams propagation through non-Kolmogorov strong turbulence[J]. Opt Express, 2013, 21(13): 15213-15229. doi: 10.1364/OE.21.015213
    [10]
    高明, 刘彦清, 王菲, 等. 偏振部分相干激光波束在湍流大气中传输的扩展和漂移[J]. 光子学报, 2014, 43:1001002. (Gao Ming, Liu Yanqing, Wang Fei, et al. Spread and wander characteristics of polarized and partially coherent laser beam propagated in turbulent atmosphere[J]. Acta Photonica Sinica, 2014, 43: 1001002 doi: 10.3788/gzxb20144310.1001002
    [11]
    Chen Chunyi, Yang Huamin, Zhou Zhou, et al. Effects of source spatial partial coherence on temporal fade statistics of irradiance flux in free-space optical links through atmospheric turbulence[J]. Opt Express, 2013, 24(21): 29731-29743.
    [12]
    倪小龙, 刘智, 姜会林, 等. 采用图形处理器加速的部分相干光实时生成方法[J]. 光子学报, 2016, 45:0310001. (Ni Xiaolong, Liu Zhi, Jiang Huilin, et al. Partially coherent beam real-time generation method accelerated by graphic processing unit[J]. Acta Photonica Sinica, 2016, 45: 0310001 doi: 10.3788/gzxb20164503.0310001
    [13]
    Jennifer C R, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: Implications for free-space laser communication[J]. J. Opt Soc Am A, 2002, 19(9): 1794-1801. doi: 10.1364/JOSAA.19.001794
    [14]
    Chen Chunyi, Yang Huamin, Kavehrad M, et al. Validity of quadratic two-source spherical wave structure functions in analysis of beam propagation through generalized atmospheric turbulence[J]. Optics Communications, 2014, 332: 343-349. doi: 10.1016/j.optcom.2014.07.040
    [15]
    Shirai T, Wolf E. Coherence and polarization of electromagnetic beams modulated by random phase screens and their changes on propagation in free space[J]. J Opt Soc Am A, 2004, 21(10): 1907-1916. doi: 10.1364/JOSAA.21.001907
    [16]
    张洁, 倪小龙, 刘智, 等. 高精度连续变倍率激光扩束系统设计[J]. 中国光学, 2019, 12(3):693-700. (Zhang Jie, Ni Xiaolong, Liu Zhi, et al. Design of high precision continuous variable magnification laser beam expansion system[J]. China Optics, 2019, 12(3): 693-700 doi: 10.3788/co.20191203.0693
    [17]
    刘春梅. 基于LCOS光学变焦系统研究[D]. 合肥: 安徽大学, 2013. 29-30

    Liu Chunmei. LCOS-based optical zoom system research[D]. Anhui: Anhui University, 2013, 29-30
    [18]
    许忠保, 王双迎, 刘文超, 等. 基于液晶空间光调制器的多焦菲涅尔透镜[J]. 光学 精密工程, 2016, 24(10s):156-161. (Xu Zhongbao, Wang Shuangying, Liu Wenchao et al. Multifocal Fresnel lens based on liquid crystal spatial light modulator[J]. Optics and Precision Engineering, 2016, 24(10s): 156-161
    [19]
    陈浩, 宣丽, 胡立发, 等. 1200 mm望远镜开环液晶自适应光学系统设计[J]. 光学 精密工程, 2010, 18(1):109-117. (Chen Hao, Xuan Li, Hu Lifa, et al. Design of 1200 mm telescope open-loop liquid crystal adaptive optical system[J]. Optics and Precision Engineering, 2010, 18(1): 109-117
    [20]
    Felde C V, Bogatyryova H V, Polyanskii P V, et al. Young's diagnostics of spatial coherence phase singularities[C]//Proc of SPIE. 2014: 62540D.
    [21]
    申琳, 杨进华, 韩福利, 等. 基于光斑图像的激光束散角测量方法研究[J]. 兵工学报, 2011, 32(7):890-895. (Shen Lin, Yang Jinhua, Han Fuli, et al. Research on laser beam divergence angle measurement method based on spot image[J]. Acta Armamentarii, 2011, 32(7): 890-895
  • Relative Articles

    [1]Pang Zixi, Huang Mingyang, Chen Jiaxin, Wu Yuwen, Yang Tao, Wang Sheng. Study on temperature rising of stripping foil and stripped electron of China Spallation Neutron Source[J]. High Power Laser and Particle Beams, 2025, 37(1): 014006. doi: 10.11884/HPLPB202537.240289
    [2]Chen Fan, Deng Tianbai, Xu Zhongxiang, Tao Jun, Ding Shichuan, Pan Tianhong, Liu Dongyang, Wu Junfeng, Chen Siyue. Water-cooling system development and its high precision water temperature control for Anhui University Free Electron Laser & High Magnetic Field device[J]. High Power Laser and Particle Beams, 2025, 37(2): 021005. doi: 10.11884/HPLPB202537.240347
    [3]Tian Qing, Liu Yi, Yang Liu, Li Yiding. Development of a control system for power supplies in a high repetition rate X-ray free electron laser facility[J]. High Power Laser and Particle Beams, 2025, 37(3): 035020. doi: 10.11884/HPLPB202537.240423
    [4]Zhu Wenchao, Wei Zhengyu, Xie Chunjie, Zhou Zeran, Wang Lin, Liang Yu. Development of the NFTHz accelerator beam profile measurement system[J]. High Power Laser and Particle Beams, 2024, 36(3): 034004. doi: 10.11884/HPLPB202436.230361
    [5]Wang Pengpeng, Zhang Wei, Wu Qi, An Shi, Yue Min, Chang Jianjun, An Jingrui. Development of control system for JUNA ion source[J]. High Power Laser and Particle Beams, 2023, 35(10): 104001. doi: 10.11884/HPLPB202335.220356
    [6]Wang Huaibao, Zhou Liang, Hu Chunming, Li Xiaohu. Development of pointed-mouth slit for neutron engineering material diffractometer at China Spallation Neutron Source[J]. High Power Laser and Particle Beams, 2023, 35(11): 114004. doi: 10.11884/HPLPB202335.230217
    [7]Xiao Lin'ge, Dai Jianping, Deng Ziwei, Zhu Hang. Study of superconducting cavity failure online compensation system based on soft core[J]. High Power Laser and Particle Beams, 2021, 33(4): 044002. doi: 10.11884/HPLPB202133.200287
    [8]Ge Liang, Zhang Wei, An Shi, An Jingrui, Wang Pengpeng, Chang Jianjun. HIRFL-CSRm power supply monitoring system[J]. High Power Laser and Particle Beams, 2019, 31(2): 025102. doi: 10.11884/HPLPB201931.019003
    [9]Cai Yuanqi, Tang Leilei, Zhou Zeran. Embedded EPICS based beam loss monitor system of HLS-Ⅱ storage ring[J]. High Power Laser and Particle Beams, 2019, 31(8): 085103. doi: 10.11884/HPLPB201931.190041
    [10]Meng Ming, Xu Taoguang, Li Fang, Xu Zhihong, Yang Tao, Li Peng, Sun Jilei. Beam position monitor system in linac to ring beam transport of China Spallation Neutron Source[J]. High Power Laser and Particle Beams, 2019, 31(6): 065104. doi: 10.11884/HPLPB201931.180313
    [11]Zhang Yuliang, Xie Zhexin, Rong Linyan, Mu Zhencheng, Lei Ge, Jin Dapeng, Li Jian. Software development of CSNS linac LLRF remote control system[J]. High Power Laser and Particle Beams, 2018, 30(11): 115101. doi: 10.11884/HPLPB201830.180171
    [12]Li Peng, Qiu Ruiyang, Li Fang, Xu Zhihong, Wang Anxin, Huang Yuling, MENG Ming, Xu Taoguang. CSNS Linac beam current measurement system[J]. High Power Laser and Particle Beams, 2018, 30(7): 075101. doi: 10.11884/HPLPB201830.180034
    [13]Guo Fan, Jiang Wei, Yang Xinglin, Zhang Linwen. Applications of asynchronous slow devices control system based on EPICS[J]. High Power Laser and Particle Beams, 2017, 29(07): 075102. doi: 10.11884/HPLPB201729.170019
    [14]Sheng Peng, Hu Chundong, Song Shihua, Liu Sheng, NBI Team. Design of control system of neutral beam injection on EAST[J]. High Power Laser and Particle Beams, 2014, 26(10): 104003. doi: 10.11884/HPLPB201426.104003
    [15]Shi Hua, Sun Hong, Huang Weiling, Zhang Chunlin, Li Xiao, Tang Jingyu, Zhao Facheng. Properties of ferrite-loaded coaxial resonant cavities at China Spallation Neutron Source[J]. High Power Laser and Particle Beams, 2013, 25(01): 93-98. doi: 10.3788/HPLPB20132501.0093
    [16]Li Xiao, Sun Hong. Beam loading compensation of rapid cycling synchrotron of China spallation neutron source[J]. High Power Laser and Particle Beams, 2013, 25(10): 2671-2674. doi: 10.3788/HPLPB20132510.2671
    [17]Zhang Haiyang, Ma Yingjie, Li Ming, Yang Xingfan, Zhang Demin, Deng Derong. Design and implementation of data acquisition system for THz-FEL facility based on EPICS[J]. High Power Laser and Particle Beams, 2013, 25(S0): 137-140.
    [18]Jiang Geyang, Fang Wending, Shen Liren. Embedded EPICS based control system of insertion devices of Shanghai Synchrotron Radiation Facility[J]. High Power Laser and Particle Beams, 2013, 25(04): 1001-1004.
    [19]He ZHexi, Li CHunHua, Qu Huamin, Xu Guanglei, Zou Yiqing. Design of primary stripper foil changer for CSNS/RCS[J]. High Power Laser and Particle Beams, 2012, 24(12): 2885-2888. doi: 10.3788/HPLPB20122412.2885
    [20]zhang de-min, jin xiao, li ming, yang xing-fan, hu he-ping, deng de-rong, chen tian-cai. Application of EPICS to accelerator control system[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- .
  • Cited by

    Periodical cited type(1)

    1. 孙静宇,马纪敏. 核数据引起的研究堆有效增殖因子计算不确定度量化. 强激光与粒子束. 2024(09): 124-130 . 本站查看

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.6 %FULLTEXT: 26.6 %META: 70.1 %META: 70.1 %PDF: 3.2 %PDF: 3.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.5 %其他: 2.5 %China: 0.3 %China: 0.3 %India: 0.1 %India: 0.1 %Russian Federation: 0.4 %Russian Federation: 0.4 %Sweden: 0.2 %Sweden: 0.2 %United Kingdom: 0.1 %United Kingdom: 0.1 %Westbury: 0.3 %Westbury: 0.3 %上海: 0.8 %上海: 0.8 %东莞: 0.2 %东莞: 0.2 %中山: 0.1 %中山: 0.1 %临汾: 0.2 %临汾: 0.2 %北京: 24.1 %北京: 24.1 %十堰: 0.1 %十堰: 0.1 %南通: 0.2 %南通: 0.2 %台州: 0.3 %台州: 0.3 %哥伦布: 0.1 %哥伦布: 0.1 %天津: 0.7 %天津: 0.7 %太原: 0.3 %太原: 0.3 %常州: 0.1 %常州: 0.1 %广州: 1.3 %广州: 1.3 %张家口: 0.8 %张家口: 0.8 %成都: 0.2 %成都: 0.2 %扬州: 0.1 %扬州: 0.1 %新乡: 0.2 %新乡: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.5 %杭州: 1.5 %桃园: 0.2 %桃园: 0.2 %武汉: 0.3 %武汉: 0.3 %汕头: 0.1 %汕头: 0.1 %江门: 0.2 %江门: 0.2 %济南: 0.3 %济南: 0.3 %深圳: 0.5 %深圳: 0.5 %湖州: 0.3 %湖州: 0.3 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 13.6 %芒廷维尤: 13.6 %苏州: 0.1 %苏州: 0.1 %西宁: 46.7 %西宁: 46.7 %西安: 0.2 %西安: 0.2 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.5 %郑州: 0.5 %重庆: 0.1 %重庆: 0.1 %金华: 0.1 %金华: 0.1 %镇江: 0.4 %镇江: 0.4 %长沙: 0.5 %长沙: 0.5 %其他ChinaIndiaRussian FederationSwedenUnited KingdomWestbury上海东莞中山临汾北京十堰南通台州哥伦布天津太原常州广州张家口成都扬州新乡晋城普洱杭州桃园武汉汕头江门济南深圳湖州石家庄福州秦皇岛绵阳芒廷维尤苏州西宁西安贵阳运城郑州重庆金华镇江长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (1709) PDF downloads(47) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return