Citation: | Ni Xiaolong, Zhu Xufang, Yu Xin, et al. Laser beam coherence and divergence angle complex controlling technique[J]. High Power Laser and Particle Beams, 2020, 32: 071008. doi: 10.11884/HPLPB202032.200078 |
[1] |
Korotkova O, Andrews L C, Phillips R L. Speckle propagation through atmospheric turbulence: Effects of a random phase screen at the source[C]//International Symposium on Optical Science and Technology. 2002: 98-109.
|
[2] |
Korotkova O, Andrews L C, Phillips R L. Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom[J]. Optical Engineering, 2016, 43(2): 341.
|
[3] |
Lee I E, Ghassemlooy Z, Ng W P, et al. Joint optimization of partially coherent Gaussian beam for free-space optical communication over turbulent channels with pointing errors[J]. Optics Letters, 2013, 38(3): 350-352. doi: 10.1364/OL.38.000350
|
[4] |
Borah D K, Voelz D G. Spatially partially coherent beam parameter optimization for free space optical communications[J]. Opt Express, 2010, 18(20): 20746-20758. doi: 10.1364/OE.18.020746
|
[5] |
柯熙政, 张宇. 部分相干光在大气湍流中的光强闪烁效应[J]. 光学学报, 2015, 35:0106001. (Ke Xizheng, Zhang Yu. Light intensity scintillation effect of partially coherent light in atmospheric turbulence[J]. Acta Photonica Sinica, 2015, 35: 0106001
|
[6] |
李宜璋, 杨晖, 李然, 等. 激光散斑血流成像系统中的光源相干性[J]. 光学 精密工程, 2019, 27(10):2127-2135. (Li Yizhang, Yang Hui, Li Ran, et al. Coherence of light source in laser speckle blood flow imaging system[J]. Optics and Precision Engineering, 2019, 27(10): 2127-2135 doi: 10.3788/OPE.20192710.2127
|
[7] |
柯熙政, 韩美苗, 王明军, 等. 部分相干光在大气湍流中斜程传输路径上的展宽与漂移[J]. 光子学报, 2015, 44:0306001. (Ke Xizheng, Han Meimiao, Wang Mingjun, et al. Spreading and wander of partially coherent beam through atmospheric turbulence in a slanted path[J]. Acta Photonica Sinica, 2015, 44: 0306001 doi: 10.3788/gzxb20154403.0306001
|
[8] |
Jenkins M H, Long J M, Gaylord T K. Multifilter phase imaging with partially coherent light[J]. Appl Opt, 2014, 53(16): D29-D39. doi: 10.1364/AO.53.000D29
|
[9] |
Deng P, Kavehrad M, Liu Z, et al. Capacity of MIMO free space optical communications using multiple partially coherent beams propagation through non-Kolmogorov strong turbulence[J]. Opt Express, 2013, 21(13): 15213-15229. doi: 10.1364/OE.21.015213
|
[10] |
高明, 刘彦清, 王菲, 等. 偏振部分相干激光波束在湍流大气中传输的扩展和漂移[J]. 光子学报, 2014, 43:1001002. (Gao Ming, Liu Yanqing, Wang Fei, et al. Spread and wander characteristics of polarized and partially coherent laser beam propagated in turbulent atmosphere[J]. Acta Photonica Sinica, 2014, 43: 1001002 doi: 10.3788/gzxb20144310.1001002
|
[11] |
Chen Chunyi, Yang Huamin, Zhou Zhou, et al. Effects of source spatial partial coherence on temporal fade statistics of irradiance flux in free-space optical links through atmospheric turbulence[J]. Opt Express, 2013, 24(21): 29731-29743.
|
[12] |
倪小龙, 刘智, 姜会林, 等. 采用图形处理器加速的部分相干光实时生成方法[J]. 光子学报, 2016, 45:0310001. (Ni Xiaolong, Liu Zhi, Jiang Huilin, et al. Partially coherent beam real-time generation method accelerated by graphic processing unit[J]. Acta Photonica Sinica, 2016, 45: 0310001 doi: 10.3788/gzxb20164503.0310001
|
[13] |
Jennifer C R, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: Implications for free-space laser communication[J]. J. Opt Soc Am A, 2002, 19(9): 1794-1801. doi: 10.1364/JOSAA.19.001794
|
[14] |
Chen Chunyi, Yang Huamin, Kavehrad M, et al. Validity of quadratic two-source spherical wave structure functions in analysis of beam propagation through generalized atmospheric turbulence[J]. Optics Communications, 2014, 332: 343-349. doi: 10.1016/j.optcom.2014.07.040
|
[15] |
Shirai T, Wolf E. Coherence and polarization of electromagnetic beams modulated by random phase screens and their changes on propagation in free space[J]. J Opt Soc Am A, 2004, 21(10): 1907-1916. doi: 10.1364/JOSAA.21.001907
|
[16] |
张洁, 倪小龙, 刘智, 等. 高精度连续变倍率激光扩束系统设计[J]. 中国光学, 2019, 12(3):693-700. (Zhang Jie, Ni Xiaolong, Liu Zhi, et al. Design of high precision continuous variable magnification laser beam expansion system[J]. China Optics, 2019, 12(3): 693-700 doi: 10.3788/co.20191203.0693
|
[17] |
刘春梅. 基于LCOS光学变焦系统研究[D]. 合肥: 安徽大学, 2013. 29-30
Liu Chunmei. LCOS-based optical zoom system research[D]. Anhui: Anhui University, 2013, 29-30
|
[18] |
许忠保, 王双迎, 刘文超, 等. 基于液晶空间光调制器的多焦菲涅尔透镜[J]. 光学 精密工程, 2016, 24(10s):156-161. (Xu Zhongbao, Wang Shuangying, Liu Wenchao et al. Multifocal Fresnel lens based on liquid crystal spatial light modulator[J]. Optics and Precision Engineering, 2016, 24(10s): 156-161
|
[19] |
陈浩, 宣丽, 胡立发, 等. 1200 mm望远镜开环液晶自适应光学系统设计[J]. 光学 精密工程, 2010, 18(1):109-117. (Chen Hao, Xuan Li, Hu Lifa, et al. Design of 1200 mm telescope open-loop liquid crystal adaptive optical system[J]. Optics and Precision Engineering, 2010, 18(1): 109-117
|
[20] |
Felde C V, Bogatyryova H V, Polyanskii P V, et al. Young's diagnostics of spatial coherence phase singularities[C]//Proc of SPIE. 2014: 62540D.
|
[21] |
申琳, 杨进华, 韩福利, 等. 基于光斑图像的激光束散角测量方法研究[J]. 兵工学报, 2011, 32(7):890-895. (Shen Lin, Yang Jinhua, Han Fuli, et al. Research on laser beam divergence angle measurement method based on spot image[J]. Acta Armamentarii, 2011, 32(7): 890-895
|
[1] | Pang Zixi, Huang Mingyang, Chen Jiaxin, Wu Yuwen, Yang Tao, Wang Sheng. Study on temperature rising of stripping foil and stripped electron of China Spallation Neutron Source[J]. High Power Laser and Particle Beams, 2025, 37(1): 014006. doi: 10.11884/HPLPB202537.240289 |
[2] | Chen Fan, Deng Tianbai, Xu Zhongxiang, Tao Jun, Ding Shichuan, Pan Tianhong, Liu Dongyang, Wu Junfeng, Chen Siyue. Water-cooling system development and its high precision water temperature control for Anhui University Free Electron Laser & High Magnetic Field device[J]. High Power Laser and Particle Beams, 2025, 37(2): 021005. doi: 10.11884/HPLPB202537.240347 |
[3] | Tian Qing, Liu Yi, Yang Liu, Li Yiding. Development of a control system for power supplies in a high repetition rate X-ray free electron laser facility[J]. High Power Laser and Particle Beams, 2025, 37(3): 035020. doi: 10.11884/HPLPB202537.240423 |
[4] | Zhu Wenchao, Wei Zhengyu, Xie Chunjie, Zhou Zeran, Wang Lin, Liang Yu. Development of the NFTHz accelerator beam profile measurement system[J]. High Power Laser and Particle Beams, 2024, 36(3): 034004. doi: 10.11884/HPLPB202436.230361 |
[5] | Wang Pengpeng, Zhang Wei, Wu Qi, An Shi, Yue Min, Chang Jianjun, An Jingrui. Development of control system for JUNA ion source[J]. High Power Laser and Particle Beams, 2023, 35(10): 104001. doi: 10.11884/HPLPB202335.220356 |
[6] | Wang Huaibao, Zhou Liang, Hu Chunming, Li Xiaohu. Development of pointed-mouth slit for neutron engineering material diffractometer at China Spallation Neutron Source[J]. High Power Laser and Particle Beams, 2023, 35(11): 114004. doi: 10.11884/HPLPB202335.230217 |
[7] | Xiao Lin'ge, Dai Jianping, Deng Ziwei, Zhu Hang. Study of superconducting cavity failure online compensation system based on soft core[J]. High Power Laser and Particle Beams, 2021, 33(4): 044002. doi: 10.11884/HPLPB202133.200287 |
[8] | Ge Liang, Zhang Wei, An Shi, An Jingrui, Wang Pengpeng, Chang Jianjun. HIRFL-CSRm power supply monitoring system[J]. High Power Laser and Particle Beams, 2019, 31(2): 025102. doi: 10.11884/HPLPB201931.019003 |
[9] | Cai Yuanqi, Tang Leilei, Zhou Zeran. Embedded EPICS based beam loss monitor system of HLS-Ⅱ storage ring[J]. High Power Laser and Particle Beams, 2019, 31(8): 085103. doi: 10.11884/HPLPB201931.190041 |
[10] | Meng Ming, Xu Taoguang, Li Fang, Xu Zhihong, Yang Tao, Li Peng, Sun Jilei. Beam position monitor system in linac to ring beam transport of China Spallation Neutron Source[J]. High Power Laser and Particle Beams, 2019, 31(6): 065104. doi: 10.11884/HPLPB201931.180313 |
[11] | Zhang Yuliang, Xie Zhexin, Rong Linyan, Mu Zhencheng, Lei Ge, Jin Dapeng, Li Jian. Software development of CSNS linac LLRF remote control system[J]. High Power Laser and Particle Beams, 2018, 30(11): 115101. doi: 10.11884/HPLPB201830.180171 |
[12] | Li Peng, Qiu Ruiyang, Li Fang, Xu Zhihong, Wang Anxin, Huang Yuling, MENG Ming, Xu Taoguang. CSNS Linac beam current measurement system[J]. High Power Laser and Particle Beams, 2018, 30(7): 075101. doi: 10.11884/HPLPB201830.180034 |
[13] | Guo Fan, Jiang Wei, Yang Xinglin, Zhang Linwen. Applications of asynchronous slow devices control system based on EPICS[J]. High Power Laser and Particle Beams, 2017, 29(07): 075102. doi: 10.11884/HPLPB201729.170019 |
[14] | Sheng Peng, Hu Chundong, Song Shihua, Liu Sheng, NBI Team. Design of control system of neutral beam injection on EAST[J]. High Power Laser and Particle Beams, 2014, 26(10): 104003. doi: 10.11884/HPLPB201426.104003 |
[15] | Shi Hua, Sun Hong, Huang Weiling, Zhang Chunlin, Li Xiao, Tang Jingyu, Zhao Facheng. Properties of ferrite-loaded coaxial resonant cavities at China Spallation Neutron Source[J]. High Power Laser and Particle Beams, 2013, 25(01): 93-98. doi: 10.3788/HPLPB20132501.0093 |
[16] | Li Xiao, Sun Hong. Beam loading compensation of rapid cycling synchrotron of China spallation neutron source[J]. High Power Laser and Particle Beams, 2013, 25(10): 2671-2674. doi: 10.3788/HPLPB20132510.2671 |
[17] | Zhang Haiyang, Ma Yingjie, Li Ming, Yang Xingfan, Zhang Demin, Deng Derong. Design and implementation of data acquisition system for THz-FEL facility based on EPICS[J]. High Power Laser and Particle Beams, 2013, 25(S0): 137-140. |
[18] | Jiang Geyang, Fang Wending, Shen Liren. Embedded EPICS based control system of insertion devices of Shanghai Synchrotron Radiation Facility[J]. High Power Laser and Particle Beams, 2013, 25(04): 1001-1004. |
[19] | He ZHexi, Li CHunHua, Qu Huamin, Xu Guanglei, Zou Yiqing. Design of primary stripper foil changer for CSNS/RCS[J]. High Power Laser and Particle Beams, 2012, 24(12): 2885-2888. doi: 10.3788/HPLPB20122412.2885 |
[20] | zhang de-min, jin xiao, li ming, yang xing-fan, hu he-ping, deng de-rong, chen tian-cai. Application of EPICS to accelerator control system[J]. High Power Laser and Particle Beams, 2008, 20(04): 0- . |
1. | 孙静宇,马纪敏. 核数据引起的研究堆有效增殖因子计算不确定度量化. 强激光与粒子束. 2024(09): 124-130 . ![]() |