Liang Jiaxin, Xiang Rujian, Du Yinglei, et al. Laser beam cleanup based on deformable-mirror eigen modes and far-field measurement[J]. High Power Laser and Particle Beams, 2020, 32: 081002. doi: 10.11884/HPLPB202032.200082
Citation: Liang Jiaxin, Xiang Rujian, Du Yinglei, et al. Laser beam cleanup based on deformable-mirror eigen modes and far-field measurement[J]. High Power Laser and Particle Beams, 2020, 32: 081002. doi: 10.11884/HPLPB202032.200082

Laser beam cleanup based on deformable-mirror eigen modes and far-field measurement

doi: 10.11884/HPLPB202032.200082
  • Received Date: 2020-03-30
  • Rev Recd Date: 2020-05-16
  • Publish Date: 2020-08-13
  • Wavefront sensor-based beam cleanup adaptive optical system is the main equiment to improve the beam quality of high-energy laser systems. However, the system is complicated and bulky because it requires to measure wavefront and needs a strong beacon source. To solve the above problems, this paper proposes a wavefront sensorless adaptive optical system which utilizes the deformable-mirror eigen modes and the characteristics of the far-field spot for processing and analyzing thus to correct the square beam. The eigenmode decomposition of the deformable mirror’s influnce function is used, and the mean square radius of the far-field spot is used as the metric function. The relationship between the eigenmode coefficient of the wavefront and the metric function is established. The measurement of the metric function is used to calculate voltage. Simulation analysis and experimental verification of the correction method show that the method can effectively achieve the correction of static aberrations and improve the energy concentration of the far-field spot.
  • [1]
    周仁忠. 自适应光学[M]. 北京: 国防工业出版社, 1996.

    Zhou Renzhong. Adaptive optics[M]. Beijing: National Defense Industry Press, 1996
    [2]
    张雨东, 饶长辉, 李新阳. 自适应光学及激光操控[M]. 北京: 国防工业出版社, 2016.

    Zhang Yudong, Rao Changhui, Li Xinyang. Adaptive optics and laser control[M]. Beijing: National Defense Industry Press, 2016
    [3]
    Débarre D, Booth M J, Wilson T. Image based adaptive optics through optimisation of low spatial frequencies[J]. Optics Express, 2007, 15(13): 8176-8190. doi: 10.1364/OE.15.008176
    [4]
    Booth M J, Débarre D, Wilson T. Image-based wavefront sensorless adaptive optics[C]//Proceedings of SPIE. 2007: 671102-671107.
    [5]
    Booth M J. Wavefront sensorless adaptive optics for large aberrations[J]. Optics Letters, 2007, 32(1): 5-7. doi: 10.1364/OL.32.000005
    [6]
    Linhai H, Rao C. Wavefront sensorless adaptive optics: a general model-based approach[J]. Optics Express, 2011, 19(1): 371-379. doi: 10.1364/OE.19.000371
    [7]
    Booth M J, Débarre D, Alexander J. Adaptive optics for biomedical microscopy[J]. Optics and Photonics News, 2012, 23(1): 22. doi: 10.1364/OPN.23.1.000022
    [8]
    Huang L H. Coherent beam combination using a general model-based method[J]. Chinese Physics Letters, 2014(9): 73-75.
    [9]
    杨慧珍, 王斌, 刘瑞明, 等. 模型式无波前探测自适应光学系统抗噪能力分析[J]. 红外与激光工程, 2017, 46(8):122-127. (Yang Huizhen, Wang Bin, Liu Ruiming, et al. Analysis of anti-noise capability of model-based wavefront sensorless adaptive optics system[J]. Infrared and Laser Engineering, 2017, 46(8): 122-127
    [10]
    王瑞, 董冰. 点目标下基于变形镜本征模式的无波前传感器自适应光学系统[J]. 中国激光, 2016, 43:0212001. (Wang Rui, Dong Bing. Deformable mirror eigen-modes based wavefront sensorless adaptive optics system for point-like target[J]. Chinese Journal of Lasers, 2016, 43: 0212001 doi: 10.3788/CJL201643.0212001
    [11]
    喻际, 董冰. 基于变形镜本征模式的空间光学遥感器波前误差校正方法研究[J]. 光学学报, 2014, 34:1228001. (Yu Ji, Dong Bing. Deformable mirror eigen modes based wavefront error correction method used for space optical remote sensor[J]. Acta Optica Sinica, 2014, 34: 1228001 doi: 10.3788/AOS201434.1228001
    [12]
    Braat. Polynomial expansion of severely aberrated wave fronts[J]. Journal of the Optical Society of America A, 1987, 4(4): 643-650. doi: 10.1364/JOSAA.4.000643
    [13]
    王瑞, 董冰. 基于变形镜本征模式的方形孔径激光光束净化[J]. 中国科技论文, 2017, 12(5):495-499. (Wang Rui, Dong Bing. Laser beam cleanup in square aperture based on deformable-mirror eigen modes[J]. China Sciencepaper, 2017, 12(5): 495-499 doi: 10.3969/j.issn.2095-2783.2017.05.004
    [14]
    王志强. 激光大气传输中无波前探测校正技术的数值仿真研究[D]. 合肥: 中国科学技术大学, 2018: 29-30.

    Wang Zhiqiang. Numerical simulation on wavefront sensorless correction for laser propagation in the atmosphere[D]. Hefei: University of Science and Technology of China, 2018: 29-30
    [15]
    向汝建. 高能固体板条激光器光束质量主动控制技术研究[D]. 绵阳: 中国工程物理研究院, 2015: 113-114.

    Xiang Rujian. Research on active control technology of beam quality of high energy solid slab laser[D]. Mianyang: China Academy of Engineering Physics, 2015: 113-114
  • Relative Articles

    [1]Zhang Zhiguang, Yang Huizhen, Liu Jinlong, Li Songheng, Su Hang, Luo Yuxiang, Wei Xiewen. Research progress in deep learning based WFSless adaptive optics system[J]. High Power Laser and Particle Beams, 2021, 33(8): 081004. doi: 10.11884/HPLPB202133.210295
    [2]Li Ziqiang, Li Xinyang, Gao Zeyu, Jia Qiwang. Review of wavefront sensing technology in adaptive optics based on deep learning[J]. High Power Laser and Particle Beams, 2021, 33(8): 081001. doi: 10.11884/HPLPB202133.210158
    [3]Shi Zongjia, Xiang Zhenjiao, Du Yinglei, Wan Min, Gu Jingliang, Li Guohui, Xiang Rujian, You Jiang, Wu Jing, Xu Honglai. Wavefront reconstruction method based on far-field information and convolutional neural network[J]. High Power Laser and Particle Beams, 2021, 33(8): 081011. doi: 10.11884/HPLPB202133.210040
    [4]Jiang Dagang, Deng Ke, Yao Zhoushi, Yang Yuanjie, Li Xiaofeng, Qin Kaiyu. Using large aperture projection optics to monitorcharacteristic parameters of far field speckle[J]. High Power Laser and Particle Beams, 2014, 26(08): 081021. doi: 10.11884/HPLPB201426.081021
    [5]Shi Xiaoyu, Feng Yong, Chen Ying, Tan Zhiying, Li Xinyang. 自适应光学系统变形镜控制电压预测[J]. High Power Laser and Particle Beams, 2012, 24(06): 1281-1286. doi: 10.3788/HPLPB20122406.1281
    [6]Yan Hu, Lei Xiang, Liu Wenjin, Wang Shuai, Gao Yuan, Dong Lizhi, Yang Ping, Xu Bing, . Beam cleanup of slab laser with 37-element bimorph deformable mirror[J]. High Power Laser and Particle Beams, 2012, 24(07): 1663-1666.
    [7]liu changhai, xi fengjie, huang shengyang, jiang zongfu. Comparison and analysis of intensity information extraction and output signals for mode-biased wavefront sensor[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [8]liu changhai, jiang zongfu, huang shengyang, xi fengjie. Theoretical simulation and experimental validation of mode-biased wavefront sensor[J]. High Power Laser and Particle Beams, 2011, 23(02): 0- .
    [9]ye zhengyu, song haiping, wang long, wang taotao, yu yanming, wang zhiyong, jiang yijian, . Measurement of far-field beam quality parameters of high power laser[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [10]huang shengyang, jiang zongfu, xi fengjie, ning yu, liu changhai. Correction of low order Zernike aberrations by curvature adaptive optics system[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [11]yu hao, huang linhai, rao changhui, jiang wenhan. Control of near-field intensity of laser beam based on adaptive optics[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [12]huang lin-hai, rao chang-hui, jiang wen-han. Beam propagation code for ICF device with adaptive optics system[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [13]li xin-yang, wang chun-hong, xian hao, jiang wen-han. Real-time modal reconstruction algorithm for adaptive optics systems[J]. High Power Laser and Particle Beams, 2002, 14(01): 0- .
    [14]wan min, su yi, xiang ru-jian. Turbulence-induced low order aberrations of optical wavefronts in partial adaptive compensation with rayleigh beacon or sodium beacon[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
    [15]shen feng, jiang wen-han. Closed-loop transferring characteristics of shack-hartmann wavefront sensor noise in adaptive optical system[J]. High Power Laser and Particle Beams, 2001, 13(06): 0- .
    [16]yu de-li, sang feng-ting, jin yu-qi, sun yi-zhu. Study of the drift and deformation for COIL output beam spot[J]. High Power Laser and Particle Beams, 2001, 13(02): 0- .
    [20]li xinyang, ling ning, chen donghong, yu jilong. STABLE CONTROLOF THE FAST STEERING MIRROR IN ADAPTIVE OPTICS SYSTEM[J]. High Power Laser and Particle Beams, 1999, 11(01): 0- .
  • Cited by

    Periodical cited type(1)

    1. 熊光昀,唐奥,兰斌,沈锋. 基于连续镜面变形镜本征模方法的复杂涡旋光场调控. 光电工程. 2022(11): 68-80 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.4 %FULLTEXT: 23.4 %META: 73.8 %META: 73.8 %PDF: 2.7 %PDF: 2.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.7 %其他: 4.7 %China: 0.8 %China: 0.8 %Czech Republic: 0.1 %Czech Republic: 0.1 %India: 0.1 %India: 0.1 %Iran (ISLAMIC Republic Of): 0.2 %Iran (ISLAMIC Republic Of): 0.2 %Saitama: 0.1 %Saitama: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.4 %[]: 0.4 %上海: 2.1 %上海: 2.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %保定: 0.1 %保定: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.1 %兰州: 0.1 %内江: 0.2 %内江: 0.2 %北京: 20.3 %北京: 20.3 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %南阳: 0.1 %南阳: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.1 %哥伦布: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.2 %天津: 0.2 %太原: 0.3 %太原: 0.3 %安康: 0.1 %安康: 0.1 %宣城: 0.2 %宣城: 0.2 %巴中: 0.1 %巴中: 0.1 %广州: 0.2 %广州: 0.2 %张家口: 0.1 %张家口: 0.1 %成都: 0.8 %成都: 0.8 %扬州: 0.2 %扬州: 0.2 %新乡: 0.1 %新乡: 0.1 %昆明: 0.2 %昆明: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.5 %杭州: 1.5 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.3 %沈阳: 0.3 %泰安: 0.1 %泰安: 0.1 %济南: 0.4 %济南: 0.4 %淮安: 0.2 %淮安: 0.2 %深圳: 0.1 %深圳: 0.1 %温州: 0.2 %温州: 0.2 %湖州: 0.2 %湖州: 0.2 %漯河: 0.4 %漯河: 0.4 %石家庄: 0.1 %石家庄: 0.1 %绵阳: 0.8 %绵阳: 0.8 %美国佛罗里达普林西亚: 0.1 %美国佛罗里达普林西亚: 0.1 %芒廷维尤: 12.4 %芒廷维尤: 12.4 %苏州: 0.1 %苏州: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.3 %衢州: 0.3 %西宁: 45.4 %西宁: 45.4 %西安: 0.8 %西安: 0.8 %贵阳: 0.1 %贵阳: 0.1 %辽阳: 0.1 %辽阳: 0.1 %运城: 1.1 %运城: 1.1 %连云港: 0.2 %连云港: 0.2 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %里蒙: 0.2 %里蒙: 0.2 %重庆: 0.3 %重庆: 0.3 %铜陵: 0.1 %铜陵: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 0.1 %长沙: 0.1 %长治: 0.1 %长治: 0.1 %阳泉: 0.2 %阳泉: 0.2 %青岛: 0.1 %青岛: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %黄冈: 0.2 %黄冈: 0.2 %其他ChinaCzech RepublicIndiaIran (ISLAMIC Republic Of)SaitamaTaiwan, ChinaUnited States[]上海中山临汾丹东伊利诺伊州保定六安兰州内江北京南京南通南阳台北台州合肥哈尔滨哥伦布大连天津太原安康宣城巴中广州张家口成都扬州新乡昆明晋城普洱杭州武汉沈阳泰安济南淮安深圳温州湖州漯河石家庄绵阳美国佛罗里达普林西亚芒廷维尤苏州莫斯科衡阳衢州西宁西安贵阳辽阳运城连云港邯郸郑州里蒙重庆铜陵长春长沙长治阳泉青岛香港特别行政区黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article views (1374) PDF downloads(51) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return