Volume 32 Issue 11
Sep.  2020
Turn off MathJax
Article Contents
Wu Yuanjun, Gao Yanqi, Hua Yilin, et al. Progress in high energy all-solid-state regenerative amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 112006. doi: 10.11884/HPLPB202032.200089
Citation: Wu Yuanjun, Gao Yanqi, Hua Yilin, et al. Progress in high energy all-solid-state regenerative amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 112006. doi: 10.11884/HPLPB202032.200089

Progress in high energy all-solid-state regenerative amplifier

doi: 10.11884/HPLPB202032.200089
  • Received Date: 2020-04-11
  • Rev Recd Date: 2020-07-01
  • Publish Date: 2020-09-13
  • Among solid-state laser amplifiers, regenerative amplifiers which have the advantages of high gain, good beam quality and simple structure, have been widely concerned and applied. After decades of development , regenerative amplifiers are able to realize pulse energy of several hundred millijoules and average power of several kilowatts in stable operation. The output performance of regenerative amplifiers is determined by properties of gain media, structure of cavity, pump condition, thermal effect and qualities of components. The properties of gain media are the most essential factors. Because of different properties of materials, regenerative amplifiers based on different kinds of materials present different structure and performance. Based on different material systems, the key common problems encountered in the development process of regenerative amplifiers under various systems, as well as several typical types of regenerative amplifiers and their characteristics are introduced. The future development trend of regenerative amplifiers is discussed.
  • loading
  • [1]
    She H, Tan S. Development and application prospects of high-energy laser weapon[J]. Infrared and Laser Engineering, 2002, 31(3): 267-271.
    [2]
    Abramov P I, Kuznetsov E V, Skvortsov L A. Prospects of using quantum-cascade lasers in optoelectronic countermeasure systems[J]. Journal of Optical Technology, 2017, 84(5): 331-341. doi: 10.1364/JOT.84.000331
    [3]
    Gibbon P, Förster E. Short-pulse laser-plasma interactions[J]. Plasma Physics and Controlled Fusion, 1996, 38(6): 769. doi: 10.1088/0741-3335/38/6/001
    [4]
    Faure J, Glinec Y, Pukhov A, et al. A laser–plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431(7008): 541-544. doi: 10.1038/nature02963
    [5]
    Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149-e149.
    [6]
    Delaigue M, Hönninger C, Torres R, et al. Comparative ultrafast laser source study for advanced materials processing[C]//IEEE Conference on Lasers and Electro-Optics. 2012: 1-2.
    [7]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
    [8]
    Yanovsky V, Felix C, Mourou G. Why ring regenerative amplification(regen)?[J]. Applied Physics B, 2002, 74(1): s181-s183.
    [9]
    Singh S, Smith R G, Uitert L G V. Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature[J]. Physical Review B, Condensed Matter, 1974, 10(6): 2566-2572. doi: 10.1103/PhysRevB.10.2566
    [10]
    Harmer A L, Linz A A, Gabbe D R. Fluorescence of Nd3+ in lithium yttrium fluoride[J]. Journal of Physics and Chemistry of Solids, 1969, 90(6): 1483-1491.
    [11]
    Sharp E J. High-efficiency Nd3+: LiYF4 laser[J]. Journal of Applied Physics, 1973, 44(12): 5399. doi: 10.1063/1.1662164
    [12]
    胡丽丽, 陈树彬, 孟涛, 等. 大口径高性能激光钕玻璃研究进展[J]. 强激光与粒子束, 2011, 32(10):2560-2564. (Hu Lili, Chen Shubin, Meng Tao, et al. Advances in high performance large aperture neodymium laser glasses[J]. High Power Laser and Particle Beams, 2011, 32(10): 2560-2564
    [13]
    Murray J E, Lowdermilk W H. Nd: YAG regenerative amplifier[J]. Journal of Applied Physics, 1980, 51(7): 3548-3556. doi: 10.1063/1.328194
    [14]
    Bado P, Bouvier M, Coe J S. Nd: YLF mode-locked oscillator and regenerative amplifier[J]. Optics Letters, 1987, 12(5): 319-321. doi: 10.1364/OL.12.000319
    [15]
    Saeed M, Kim D, Dimauro L F. Optimization and characterization of a high repetition rate, high intensity Nd: YLF regenerative amplifier[J]. Applied Optics, 1991, 30(18): 2527. doi: 10.1364/AO.30.002527
    [16]
    Dimmick T E. Semiconductor-laser-pumped, CW mode-locked Nd: phosphate glass laser oscillator and regenerative amplifier[J]. Optics Letters, 1990, 15(3): 177-179. doi: 10.1364/OL.15.000177
    [17]
    Gifford M, Weingarten K J. Diode-pumped Nd: YLF regenerative amplifier[J]. Optics Letters, 1992, 17(24): 1788-1790. doi: 10.1364/OL.17.001788
    [18]
    Naito K, Ohmi M, Ishikawa K, et al. Demonstration of high energy extraction efficiency in a laser-diode pumped high gain Nd: YAG regenerative amplifier[J]. Applied Physics Letters, 1994, 64(10): 1186. doi: 10.1063/1.110884
    [19]
    Turi L, Juhasz T. High-power longitudinally end-diode-pumped Nd: YLF regenerative amplifier[J]. Optics Letters, 1995, 20(2): 154-156. doi: 10.1364/OL.20.000154
    [20]
    Bagnoud V, Luce J, Videau L, et al. Diode-pumped regenerative amplifier delivering 100-mJ single-mode laser pulses[J]. Optics Letters, 2001, 26(6): 337-339. doi: 10.1364/OL.26.000337
    [21]
    Sekine T, Matsuoka S I, Yasuhara R, et al. 84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd: YLF ring amplifier with phase-conjugated wavefront corrector[J]. Optics Express, 2010, 18(13): 13927-13934. doi: 10.1364/OE.18.013927
    [22]
    Braun A, Liu X, Kopf D, et al. Diode-pumped Nd: glass regenerative amplifier for subpicosecond microjoule-level pulses[J]. Applied Optics, 1997, 36(18): 4163-4167. doi: 10.1364/AO.36.004163
    [23]
    Ribeyre X, Videau L, Migus A, et al. Nd: glass diode-pumped regenerative amplifier, multimillijoule short-pulse chirped-pulse-amplifier laser[J]. Optics Letters, 2003, 28(15): 1374-1376. doi: 10.1364/OL.28.001374
    [24]
    Rapoport W R, Khattak C P. Titanium sapphire laser characteristics[J]. Applied Optics, 1988, 27(13): 2677-2684. doi: 10.1364/AO.27.002677
    [25]
    Moulton P F. Spectroscopic and laser characteristics of Ti2O3[J]. J Opt Soc Am B, 1986, 3(1): 125-133. doi: 10.1364/JOSAB.3.000125
    [26]
    Xu M, Si J L, Zhang X C, et al. Study on thermal properties of titanium-doped sapphire crystal[J]. Journal of Synthetic Crystals, 2014, 43(5): 1043-1049.
    [27]
    Salin F, Squier J, Mourou G, et al. Multikilohertz Ti: Al2O3 amplifier for high-power femtosecond pulses[J]. Optics Letters, 1991, 16(24): 1964-1966. doi: 10.1364/OL.16.001964
    [28]
    Norris T B. Femtosecond pulse amplification at 250 kHz with a Ti: sapphire regenerative amplifier and application to continuum generation[J]. Optics Letters, 1992, 17(14): 1009-1011. doi: 10.1364/OL.17.001009
    [29]
    Rudd J V, Korn G, Kane S, et al. Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti: Al2O3 regenerative amplifier[J]. Optics Letters, 1993, 18(23): 2044-2046. doi: 10.1364/OL.18.002044
    [30]
    Wynne K, Reid G D, Hochstrasser R M. Regenerative amplification of 30-fs pulses in Ti: sapphire at 5 kHz[J]. Optics Letters, 1994, 19(12): 895-897. doi: 10.1364/OL.19.000895
    [31]
    Yamakawa K, Aoyama M, Matsuoka S, et al. Generation of 16-fs, 10-TW pulses at a 10-Hz repetition rate with efficient Ti: sapphire amplifiers[J]. Optics Letters, 1998, 23(7): 525-527. doi: 10.1364/OL.23.000525
    [32]
    Nabekawa Y, Shimizu Y, Midorikawa K. Sub-20-fs terawatt-class laser system with a mirrorless regenerative amplifier and an adaptive phase controller[J]. Optics Letters, 2002, 27(14): 1265-1267. doi: 10.1364/OL.27.001265
    [33]
    Gaudiosi D M, Lytle A L, Kohl P, et al. 11-W average power Ti: sapphire amplifier system using downchirped pulse amplification[J]. Optics Letters, 2004, 29(22): 2665-2667. doi: 10.1364/OL.29.002665
    [34]
    Hong K H, Kostritsa S, Yu T J, et al. 100-kHz high-power femtosecond Ti: sapphire laser based on downchirped regenerative amplification[J]. Optics Express, 2006, 14(2): 970-978. doi: 10.1364/OPEX.14.000970
    [35]
    Takada H, Kakehata M, Torizuka K. High-repetition-rate 12 fs pulse amplification by a Ti: sapphire regenerative amplifier system[J]. Optics Letters, 2006, 31(8): 1145-1147. doi: 10.1364/OL.31.001145
    [36]
    Yang J Z H, Walker B C. 0.09-terawatt pulses with a 31% efficient, kilohertz repetition-rate Ti: sapphire regenerative amplifier[J]. Optics Letters, 2001, 26(7): 453-455. doi: 10.1364/OL.26.000453
    [37]
    Zhavoronkov N, Korn G. Regenerative amplification of femtosecond laser pulses in Ti: sapphire at multikilohertz repetition rates[J]. Optics Letters, 2004, 29(2): 198-200. doi: 10.1364/OL.29.000198
    [38]
    Matsushima I, Yashiro H, Tomie T. 10 kHz 40 W Ti: sapphire regenerative ring amplifier[J]. Optics Letters, 2006, 31(13): 2066-2068. doi: 10.1364/OL.31.002066
    [39]
    Zhang X, Schneider E, Taft G, et al. Multi-microjoule, MHz repetition rate Ti: sapphire ultrafast regenerative amplifier system[J]. Optics Express, 2012, 20(7): 7015-7021. doi: 10.1364/OE.20.007015
    [40]
    Backus S, Kirchner M, Lemons R, et al. Direct diode pumped Ti: sapphire ultrafast regenerative amplifier system[J]. Optics Express, 2017, 25(4): 3666-3674. doi: 10.1364/OE.25.003666
    [41]
    Sumida D S, Fan T Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media[J]. Optics Letters, 1994, 19(17): 1343-1345. doi: 10.1364/OL.19.001343
    [42]
    Hönninger C, Paschotta R, Graf M, et al. Ultrafast ytterbium-doped bulk lasers and laser amplifiers[J]. Applied Physics B, 1999, 69(1): 3-17. doi: 10.1007/s003400050762
    [43]
    Kuleshov N V, Lagatsky A A, Podlipensky A V, et al. Pulsed laser operation of Yb-doped KY(WO4)2 and KGd (WO4)2[J]. Optics Letters, 1997, 22(17): 1317-1319. doi: 10.1364/OL.22.001317
    [44]
    Brenier A, Boulon G. Overview of the best Yb3+ -doped laser crystals[J]. Journal of Alloys & Compounds, 2001, 323(1): 210-213.
    [45]
    Paradis C, Modsching N, Wittwer V J, et al. Generation of 35-fs pulses from a Kerr lens mode-locked Yb: Lu2O3 thin-disk laser[J]. Optics Express, 2017, 25(13): 14918-14925. doi: 10.1364/OE.25.014918
    [46]
    Druon F, Ricaud S, Papadopoulos D N, et al. On Yb: CaF2 and Yb: SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance[J]. Optical Materials Express, 2011, 1(3): 489-502. doi: 10.1364/OME.1.000489
    [47]
    Petit V, Doualan J L, Camy P, et al. CW and tunable laser operation of Yb3+ doped CaF2[J]. Applied Physics B, 2004, 78(6): 681-684. doi: 10.1007/s00340-004-1514-6
    [48]
    Hönninger C, Johannsen I, Moser M, et al. Diode-pumped thin-disk Yb: YAG regenerative amplifier[J]. Applied Physics B: Lasers and Optics, 1997, 65(3): 423-426. doi: 10.1007/s003400050291
    [49]
    Höiminger C, Zhang G, Moser M, et al. Diode-pumped thin disc Yb: YAG regenerative amplifier[C]//Advanced Solid State Lasers. 1998: TS3.
    [50]
    Stolzenburg C, Giesen A. Picosecond regenerative Yb: YAG thin disk amplifier at 200 kHz repetition rate and 62 W output power[C]//Advanced Solid-State Photonics. 2007: MA6.
    [51]
    Metzger T, Schwarz A, Teisset C Y, et al. High-repetition-rate picosecond pump laser based on a Yb: YAG disk amplifier for optical parametric amplification[J]. Optics Letters, 2009, 34(14): 2123-2125. doi: 10.1364/OL.34.002123
    [52]
    Dörring J, Killi A, Morgner U, et al. Period doubling and deterministic chaos in continuously pumped regenerative amplifiers[J]. Optics Express, 2004, 12(8): 1759-1768. doi: 10.1364/OPEX.12.001759
    [53]
    Volodin B L, Dolgy S V, Melnik E D, et al. Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings[J]. Optics Letters, 2004, 29(16): 1891-1893. doi: 10.1364/OL.29.001891
    [54]
    Chyla M, Smrz M, Mocek T. High-energy, picosecond regenerative thin-disk amplifier at 1 kHz[C]//Proc of SPIE. 2012: 82351W.
    [55]
    Teisset C, Schultze M, Bessing R, et al. 300 W picosecond thin-disk regenerative amplifier at 10 kHz repetition rate[C]//Advanced Solid State Lasers. 2013.
    [56]
    Chyla M, Miura T, Smrž M, et al. 50-mJ, 1-kHz Yb: YAG thin-disk regenerative amplifier with 969-nm pulsed pumping[C]//Proc of SPIE. 2014:89590S.
    [57]
    Klingebiel S, Schultze M, Teisset C Y, et al. 220mJ, 1 kHz picosecond regenerative thin-disk amplifier[C]//The European Conference on Lasers and Electro-Optics. 2015.
    [58]
    Jung R, Tümmler J, Will I. Regenerative thin-disk amplifier for 300 mJ pulse energy[J]. Optics Express, 2016, 24(2): 883. doi: 10.1364/OE.24.000883
    [59]
    Jung R, Tümmler J, Nubbemeyer T, et al. Thin-disk ring amplifier for high pulse energy[J]. Optics Express, 2016, 24(5): 4375. doi: 10.1364/OE.24.004375
    [60]
    Nubbemeyer T, Kaumanns M, Ueffing M, et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 2017, 42(7): 1381-1384. doi: 10.1364/OL.42.001381
    [61]
    Krötz P, Wandt C, Grebing C, et al. Towards 2 kW, 20 kHz ultrafast thin-disk based regenerative amplifiers[C]//Advanced Solid State Lasers. 2019: ATh1A.
    [62]
    Beyertt A, Nickel D, Giesen A. Femtosecond thin-disk Yb: KYW regenerative amplifier[J]. Applied Physics B, 2005, 80(6): 655-660. doi: 10.1007/s00340-005-1796-3
    [63]
    Buenting U, Sayinc H, Wandt D, et al. Regenerative thin disk amplifier with combined gain spectra producing 500 μJ sub 200 fs pulses[J]. Optics Express, 2009, 17(10): 8046-8050. doi: 10.1364/OE.17.008046
    [64]
    Sevillano P, Brisset J G, Trophème B, et al. High energy regenerative amplifier based on Yb: CaF2[C]//Proc of SPIE. 2017: 1008223.
    [65]
    Caracciolo E, Pirzio F, Kemnitzer M, et al. 42 W femtosecond Yb: Lu2O3 regenerative amplifier[J]. Optics Letters, 2016, 41(15): 3395-3398. doi: 10.1364/OL.41.003395
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (2656) PDF downloads(255) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return