Citation: | Wang Liuya, Ding Haibing. Design of depressed collector for Ka-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 083001. doi: 10.11884/HPLPB202032.200093 |
[1] |
洪伟, 余超, 陈继新, 等. 毫米波与太赫兹技术[J]. 中国科学: 信息科学, 2016, 46(8):1086-1107. (Hong Wei, Yu Chao, Chen Jixin, et al. Millimeter wave and terahertz technology[J]. Scientia Sinica Informationis, 2016, 46(8): 1086-1107 doi: 10.1360/N112016-00069
|
[2] |
丁耀根. 功率速调管的技术现状和最新进展[J]. 真空电子技术, 2020(1):1-25. (Ding Yaogen. The technical status and latest progress of high-power klystron[J]. Vacuum Electronic, 2020(1): 1-25
|
[3] |
Srivastava V, Sinha A K, Josh S N, et al. Design of four-stage depressed collector for a high efficiency helix TWT[C]//Third IEEE International Vacuum Electronics Conference. 2002: 257-258.
|
[4] |
Chodorow M, Wessel-Berg T. A high-efficiency klystron with distributed interaction[J]. IRE Trans Electron Devices, 1961, 8(1): 44-15. doi: 10.1109/T-ED.1961.14708
|
[5] |
张长青, 阮存军, 王树忠, 等. 梯形结构高功率扩展互作用速调管[J]. 红外与毫米波学报, 2015, 34(3):307-313. (Zhang Changqing, Ruan Cunjun, Wang Shuzhong, et al. High-power extended-interaction klystron with ladder-type structure[J]. Journal of Infrared and Millimeter Waves, 2015, 34(3): 307-313 doi: 10.11972/j.issn.1001-9014.2015.03.010
|
[6] |
丁耀根. 大功率速调管的设计制造与应用[M]. 北京: 国防工业出版社, 2010.
Ding Yaogen. Design, manufacture and application of high-power klystrons[M]. Beijing: National Defense Industry Press, 2010
|
[7] |
刘宇荣, 刘斌, 王大明. 大功率行波管两级降压收集极的设计[J]. 强激光与粒子束, 2017, 29:103002. (Liu Yurong, Liu Bin, Wang Daming. Design of two stage depressed collector for high-power traveling wave tube[J]. High Power Laser and Particle Beams, 2017, 29: 103002 doi: 10.11884/HPLPB201729.170144
|
[8] |
Gao Dongping, Ding Yaogen, Zhang Zhaochuan, et al. Design of a continuous wave Ka-band extended interaction klystron[C]//2014 IEEE International Vacuum Electronics Conference. 2014.
|
[9] |
Ding Haibing, Tang Liang, Song Yihao, et al. Design of a Ka-band CW extended interaction klystron[C]//2018 IEEE International Vacuum Electronics Conference. 2018.
|
[10] |
Gilmour A S. Klystron, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons[M]. Beijing: National Defense Industry Press, 2012.
|
[11] |
寇建勇, 闫铁昌, 盛兴. 用Opera3D计算速调管多级降压收集极[J]. 真空电子技术, 2017(6):71-74. (Kou Jianyong, Yan Tiechang, Sheng Xing. Simulation of MDCs for klystrons using Opera 3D[J]. Vacuum Electronic, 2017(6): 71-74
|
[12] |
刘明辉. 多级降压收集极的模拟与实验研究[D]. 成都: 电子科技大学, 2012: 10-25.
Liu Minghui. Simulation and experimental study of multistage depressed collector[D]. Chengdu: University of Electronic Science and Technology, 2012: 10-25
|
[13] |
郑志清, 罗勇, 蒋伟, 等. 回旋行波管收集极的热分析[J]. 强激光与粒子束, 2013, 25(3):721-726. (Zheng Zhiqing, Luo Yong, Jiang Wei, et al. Thermal analysis of gyrotron traveling-wave tube collector[J]. High Power Laser and Particle Beams, 2013, 25(3): 721-726 doi: 10.3788/HPLPB20132503.0721
|
[14] |
白现臣, 杨建华, 张建德, 等. 电子束收集极对大间隙速调管输出腔效率的影响[J]. 强激光与粒子束, 2011, 23(6):1625-1628. (Bai Xianchen, Yang Jianhua, Zhang Jiande, et al. Influence of electron beam collector on output cavity efficiency of wide-gap klystron amplifier[J]. High Power Laser and Particle Beams, 2011, 23(6): 1625-1628 doi: 10.3788/HPLPB20112306.1625
|
[15] |
耿志辉, 刘濮鲲, 粟亦农, 等. W波段连续波30 kW回旋振荡管高频系统和收集极的设计[J]. 强激光与粒子束, 2011, 23(11):3036-3038. (Geng Zhihui, Liu Pukun, Su Yinong, et al. Design of interaction circuit and collector for W-band continuous wave 30 kW gyrotron oscillator[J]. High Power Laser and Particle Beams, 2011, 23(11): 3036-3038 doi: 10.3788/HPLPB20112311.3036
|