Volume 32 Issue 11
Sep.  2020
Turn off MathJax
Article Contents
Cao Zhurong, Wang Qiangqiang, Deng Bo, et al. Progress of X-ray high-speed photography technology used in laser driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112004. doi: 10.11884/HPLPB202032.200099
Citation: Cao Zhurong, Wang Qiangqiang, Deng Bo, et al. Progress of X-ray high-speed photography technology used in laser driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112004. doi: 10.11884/HPLPB202032.200099

Progress of X-ray high-speed photography technology used in laser driven inertial confinement fusion

doi: 10.11884/HPLPB202032.200099
  • Received Date: 2020-04-28
  • Rev Recd Date: 2020-07-28
  • Publish Date: 2020-09-13
  • In the study of laser driven inertial confinement fusion (ICF), the image data obtained through X-ray high-speed photography technology can be used to analyze the spatial and temporal evolution of the plasma with fluid state produced by work and energy transport. The research of X-ray high-speed photography technology has always been an important part of the development of ICF diagnostics. The Laser Fusion Research Center of China Academy of Engineering Physics has made important progresses in the research of X-ray high-speed photography technology in recent years. These advances include: (1) making a success in developing the X-ray camera with 100ps exposure time for Shenguang laser facilities, which has reached the international advanced level as a whole, and is characterised in such aspects as high sensitivity, transmission-type band-pass filtering and miniaturized design; (2) proposing new types of X-ray high-speed photography technologies with 10 ps exposure time such as the micro-sweep gating technology to break the bottleneck of temporal resolution; (3) taking the lead in carrying out theoretical design, technical verification and engineering design of the radiation-hardened X-ray high-speed camera in China; (4) making the efforts on modeling and simulation on target debris and carrying out the special experiments for the first time in China to verify the simulation results.
  • loading
  • [1]
    Keefe D. Inertial confinement fusion[J]. Annual Review of Nuclear and Particle Science, 2003, 32(1): 391-441.
    [2]
    Yamanaka C. Inertial confinement fusion[J]. Physica Scripta, 2007, 1982(T2B): 486.
    [3]
    Yamanaka C. Inertial confinement fusion: The quest for ignition and energy gain using indirect drive[J]. Nuclear Fusion, 2002, 39(6): 825.
    [4]
    江少恩, 丁永坤, 缪文勇, 等. 我国激光惯性约束聚变实验研究进展[J]. 中国科学: G辑, 2009, 39(11):1571. (Jiang Shaoen, Ding Yongkun, Miao Wenyong, et al. Recent progress of inertial confinement fusion experiments in China[J]. Sci China Ser G, 2009, 39(11): 1571
    [5]
    贺贤土. 惯性约束聚变研究进展和展望[J]. 核科学与工程, 2000(3):57-60. (He Xiantu. Progress and prospects for inertial confinement fusion research[J]. Chinese Journal of Nuclear Science and Engineering, 2000(3): 57-60
    [6]
    Moses E I. The National Ignition Campaign: status and progress[J]. Nuclear Fusion, 2013, 53: 104020. doi: 10.1088/0029-5515/53/10/104020
    [7]
    丁永坤, 江少恩, 刘慎业, 等. 激光聚变研究中心聚变靶物理实验和诊断技术研究进展[J]. 强激光与粒子束, 2013, 25(12):3077-3081. (Ding Yongkun, Jiang Shaoen, Liu Shenye, et al. Recent progress of physical experiment and target diagnostics in Research Center of Laser Fusion[J]. High Power Laser and Particle Beams, 2013, 25(12): 3077-3081 doi: 10.3788/HPLPB20132512.3077
    [8]
    温树槐, 丁永坤. 激光惯性约束聚变诊断学[M]. 北京: 国防工业出版社, 2012.

    Wen Shuhuai, Ding Yongkun. Laser inertial confinement fusion diagnostics[M]. Beijing: National Defense Industry Press, 2012
    [9]
    李三伟, 杨冬, 李欣, 等. 我国激光间接驱动黑腔物理实验研究进展[J]. 中国科学: G辑, 2018, 48:065202. (Li Sanwei, Yang Dong, Li Xin, et al. Recent progress of hohlraum physics experiments in indirect-driven ICF in China[J]. Sci China Ser G, 2018, 48: 065202
    [10]
    Pak A, Dewald E, Milovich J, et al. Tuning the early-time radiation flux symmetry in indirect drive implosion experiments at the National Ignition Facility[C]//55th Annual Meeting of the APS Division of Plasma Physics. 2013.
    [11]
    陈伯伦, 黄天暄, 江少恩, 等. 再发射技术测量SGⅡ黑腔靶早期对称性[J]. 强激光与粒子束, 2013, 25(2):385-388. (Chen Bolun, Huang Tianxuan, Jiang Shaoen, et al. Re-emission technique for early time hohlraum radiation symmetry measurements on SGⅡfacility[J]. High Power Laser and Particle Beams, 2013, 25(2): 385-388 doi: 10.3788/HPLPB20132502.0385
    [12]
    Benedetti L B, Nagel S R, Izumi N, et al. Quantitative analysis of X-ray self emission in ICF implosions using orthogonal images[C]//58th Annual Meeting of APS Division of Plasma Physics. 2016.
    [13]
    袁永腾, 侯立飞, 涂绍勇, 等. X光能点、放大倍率及针孔尺寸对空间分辨的影响[J]. 强激光与粒子束, 2014, 26:022001. (Yuan Yongteng, Hou Lifei, Tu Shaoyong, et al. Effect of X-ray wavelength, pinhole aperture and magnification on spatial resolution[J]. High Power Laser and Particle Beams, 2014, 26: 022001 doi: 10.3788/HPLPB20142602.22001
    [14]
    Gotchev O V, Jaanimagi P A, Knauer J P, et al. High-throughput, high-resolution Kirkpatrick-Baez microscope for advanced streaked imaging of ICF experiments on Omega[J]. Review of Scientific Instruments, 2003, 74(3): 2178-2181. doi: 10.1063/1.1537864
    [15]
    穆宝忠, 伊圣振, 黄圣铃, 等. ICF用Kirkpatrick-Baez型显微镜光学设计[J]. 强激光与粒子束, 2008, 20:409-412. (Mu Baozhong, Yi Shengzhen. Huang Shengling, et al. Optical design of Kirkpatrick-Baez microscope for ICF[J]. High Power Laser and Particle Beams, 2008, 20: 409-412
    [16]
    Xie Qing, Mu Baozhong, Li Yaran, et al. Design of KB complex type microscope for ICF X-ray diagnostics[C]//Proc of SPIE. 2016: 99630X.
    [17]
    Pickworth L, Bradley D, Pardini T, et al. A Kirkpatrick-Baez microscope for core implosion imaging at NIF[C]//APS Meeting. 2013.
    [18]
    Yi Shengzhen, Mu Baozhong, Wang Xin, et al. A four-channel multilayer KB microscope for high-resolution 8-keV X-ray imaging in laser-plasma diagnostics[J]. Chinese Optics Letters, 2014, 12: 013401. doi: 10.3788/COL201412.013401
    [19]
    Yi Shengzhen, Zhang Zhe, Huang Qiushi, et al. Eight-channel Kirkpatrick-Baez microscope for multiframe X-ray imaging diagnostics in laser plasma experiments[J]. Review of Scientific Instruments, 2016, 87: 103501. doi: 10.1063/1.4963702
    [20]
    Troussel P, Munsch P, Ferme J. Microfocusing between 1 and 5 keV with Wolter-type optics[C]//Proc of SPIE. 1999, 3773: 60-69.
    [21]
    李亚冉, 谢青, 陈志强, 等. 激光等离子体诊断用Wolter型X射线显微镜的设计[J]. 强激光与粒子束, 2018, 30:062002. (Li Yaran, Xie Qing, Chen Zhiqiang, et al. Optical design of Wolter X-ray microscope for laser plasma diagnostics[J]. High Power Laser and Particle Beams, 2018, 30: 062002 doi: 10.11884/HPLPB201830.170440
    [22]
    McCarville T, Fulkerson S, Booth R, et al. Gated X-ray intensifier for large format simultaneous imaging[J]. Review of Scientific Instruments, 2005, 76: 103501. doi: 10.1063/1.2090328
    [23]
    袁铮, 杨志文, 李晋, 等. 基于光电子脉冲展宽的高时间分辨成像技术[J]. 强激光与粒子束, 2014, 26:052007. (Yuan Zheng, Yang Zhiwen, Li Jin, et al. Ultrafast time resolution 2D imaging technology based on photoelectron pulse quasi-linearly dilation[J]. High Power Laser and Particle Beams, 2014, 26: 052007 doi: 10.11884/HPLPB201426.052007
    [24]
    Nagel S R, Hilsabeck T J, Bell P M, et al. Dilation X-ray imager a new/faster gated X-ray imager for the NIF[J]. Review of Scientific Instruments, 2012, 83: 10E116. doi: 10.1063/1.4732849
    [25]
    Nagel S R, Ayers M J, Felker B, et al. Performance measurements of the DIXI (dilation X-ray imager) photocathode using a laser produced X-ray source[C]// Proc of SPIE. 2012: 85050H.
    [26]
    Nagel S R, Hilsabeck T J, Bell P M, et al. Investigating high speed phenomena in laser plasma interactions using dilation X-ray imager[J]. Review of Scientific Instruments, 2014, 85: 11E504. doi: 10.1063/1.4890396
    [27]
    Bai Yanli, Long Jinghua, Liu Jinyuan, et al. Demonstration of 11-ps exposure time of a framing camera using pulse-dilation technology and a magnetic lens[J]. Optical Engineering, 2015, 54: 124103. doi: 10.1117/1.OE.54.12.124103
    [28]
    Cai Houzhi, Fu Wenyong, Bai Yanli, et al. Simulation of a dilation X-ray framing camera[J]. Journal of Electron Imaging, 2017, 26: 043003. doi: 10.1117/1.JEI.26.4.043003
    [29]
    Yi S, Assoufid L, Takacs P, et al. Large-field high-energy KB microscope with a periodic multilayer[C]//Proc of SPIE. 2010: 78010C.
    [30]
    刘利锋, 肖沙里, 钱家渝. 球面晶体背光成像系统模拟[J]. 应用光学, 2016, 37(3):332-336. (Liu Lifeng, Xiao Shali, Qian Jiayu, et al. Simulation of backlight imaging system by spherically bent crystal[J]. Journal of Applied Optics, 2016, 37(3): 332-336 doi: 10.5768/JAO201637.0301002
    [31]
    Hagmann C, Izumi N, Bell P, et al. Modeling of neutron induced backgrounds in X-ray framing cameras[J]. Review of Scientific Instruments, 2010, 81: 10E514. doi: 10.1063/1.3460454
    [32]
    Izumi N, Hagmann C, Stone G, et al. Experimental study of neutron-induced background noise on gated X-ray framing cameras[J]. Review of Scientific Instruments, 2010, 81: 10E515. doi: 10.1063/1.3478636
    [33]
    Jaanimagi P, Boni R, Keck R. Neutron-induced background in charge-coupled device detectors[J]. Review of Scientific Instruments, 2001, 72(1): 801-804. doi: 10.1063/1.1319871
    [34]
    Khan S, Bell P, Bradley D, et al. Measuring X-ray burn history with the Streaked Polar Instrumentation for Diagnosing Energetic Radiation (SPIDER) at the National Ignition Facility (NIF)[C]//Proc of SPIE. 2012: 850505.
    [35]
    Rymell L, Hertz H. Debris elimination in a droplet-target laser-plasma soft X-ray source[J]. Review of Scientific Instruments, 1995, 66(10): 4916. doi: 10.1063/1.1146174
    [36]
    Tobin M, Andrew J, Eder D, et al. Characterizing shrapnel and debris produced in high power laser experiments[C]//The 3rd International Conference on Inertial Fusion Sciences and Applications. 2003.
    [37]
    Miller M C, Celeste J, Stoyer M A. Debris characterization diagnostic for the NIF[J]. Review of Scientific Instruments, 2001, 72(1): 537-539. doi: 10.1063/1.1310587
    [38]
    Eder D, Koniges A, Landen O, et al. Debris and shrapnel mitigation procedure for NIF experiments[J]. Journal of Physics Conference, 2008, 112: 032023. doi: 10.1088/1742-6596/112/3/032023
    [39]
    Eder D, Koniges A, Bonneau F, et al. Simulation of shrapnel to aid in the design of NIF/LMJ target-diagnostic configurations[C]//The 3rd International Conference on Inertial Fusion Sciences and Applications. 2003.
    [40]
    Trosseille C, Aubert D, Auger L, et al. Overview of the ARGOS X-ray framing camera for Laser Megajoule[J]. Review of Scientific Instruments, 2014, 85: 11D620. doi: 10.1063/1.4891057
    [41]
    Oertel J, Aragonez R, Archuleta T, et al. Gated X-ray detector for the National Ignition Facility[J]. Review of Scientific Instruments, 2006, 77: 10E308. doi: 10.1063/1.2227439
    [42]
    Kimbrough J R, Bell P M, Bradley D K, et al. Standard design for National Ignition Facility X-ray streak and framing cameras[J]. Review of Scientific Instruments, 2010, 81: 10E530. doi: 10.1063/1.3496990
    [43]
    Kimbrough J R, Bell P M, Christianson G B, et al. National Ignition Facility core X-ray streak camera[J]. Review of Scientific Instruments, 2001, 72: 748-750. doi: 10.1063/1.1318262
    [44]
    李晋, 胡昕, 樊龙, 等. X射线条纹相机阴极制备及其绝对标定[J]. 强激光与粒子束, 2015, 27:082003. (Li Jin, Hu Xin, Fan Long, et al. Fabrication and absolute calibration of X-ray streak camera cathode[J]. High Power Laser and Particle Beams, 2015, 27: 082003 doi: 10.11884/HPLPB201527.082003
    [45]
    曹柱荣, 刘慎业, 张海鹰, 等. 神光III核心X射线分幅相机[J]. 光子学报, 2009, 38:1881-1885. (Cao Zhurong, Liu Shenye, Zhang Haiying, et al. SHEN-GUANG III core X-ray framing cameras[J]. Acta Photonica Sinica, 2009, 38: 1881-1885
    [46]
    Wang Qiangqiang, Deng Bo, Cao Zhurong, et al. Development of a gated X-ray imager with multiple views and spectral selectivity for observing plasma evolution in hohlraum[J]. Review of Scientific Instruments, 2019, 90: 073301. doi: 10.1063/1.5066319
    [47]
    杨文正, 白永林, 秦君军, 等. 软X射线皮秒分幅相机的增益压窄效应[J]. 强激光与粒子束, 2009, 21(5):755-760. (Yang Wenzheng, Bai Yongling, Qin Junjun, et al. Gain narrowing effect of soft X-ray picoseconds framing camera[J]. High Power Laser and Particle Beams, 2009, 21(5): 755-760
    [48]
    Yang Wenzheng, Bai Yonglin, Liu Baiyu, et al. Temporal resolution technology of a soft X-ray picosecond framing camera based on Chevron micro-channel plates gated in cascade[J]. Nuclear Instruments and Methods in Physics Research Section A, 2009, 608: 291-296. doi: 10.1016/j.nima.2009.06.110
    [49]
    Cao Zhurong, Jin Fengtao, Dong Jianjun, et al. Soft X-ray low-pass filter with a square-pore microchannel plate[J]. Optics Letter, 2013, 38: 1509-1511. doi: 10.1364/OL.38.001509
    [50]
    曹柱荣, 董建军, 杨正华, 等. 一种透射式软X光带通方法研究[J]. 物理学报, 2013, 62:045205. (Cao Zhurong, Dong Jianjun, Yang Zhenghua, et al. A new method of soft X-ray transmission band-pass[J]. Acta Physica Sinica, 2013, 62: 045205 doi: 10.7498/aps.62.045205
    [51]
    袁铮, 曹柱荣, 朱效立, 等. 一种X射线成像型平响应低通滤波技术[J]. 光学学报, 2013, 62:045205. (Yuan Zheng, Cao Zhurong, Zhu Xiaoli, et al. A technology of X-ray imaging flat-response low-pass filter[J]. Acta Optica Sinica, 2013, 62: 045205
    [52]
    Ayers M J, Nagel S R, Felker B, et al. Design and implementation of Dilation X-ray Imager for NIF “DIXI”[C]//Proc of SPIE.2013: 88500C.
    [53]
    Carpenter A C, Dayton M, Kimbrough J, et al. Single line of sight CMOS radiation tolerant camera system design overview[C]// Proc of SPIE. 2016: 99660H.
    [54]
    Engelhorn K, Hilsabeck T J, Kilkenny J, et al. Sub-nanosecond single line-of-sight (SLOS) X-ray imagers (invited)[J]. Review of Scientific Instruments, 2018, 89: 10G117. doi: 10.1063/1.5036767
    [55]
    Nagel S R, Carpenter A C, Park J, et al. The dilation aided single-line-of-sight X-ray framing camera for the National Ignition Facility: Characterization and fielding[J]. Review of Scientific Instruments, 2018, 89: 10G125. doi: 10.1063/1.5038671
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (2145) PDF downloads(156) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return