Citation: | Ji Lailin, Zhao Xiaohui, Liu Dong, et al. Research progress of low-temporal-coherence light frequency conversion technology for high power Nd:glass laser system[J]. High Power Laser and Particle Beams, 2020, 32: 112009. doi: 10.11884/HPLPB202032.200103 |
[1] |
Fedotov S I, Feoktistov L P, Osipov M V, et al. Lasers for ICF with a controllable function of mutual coherence of radiation[J]. Journal of Russian Laser Research, 2004, 25(1): 79-92. doi: 10.1023/B:JORR.0000012486.89881.d8
|
[2] |
Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
|
[3] |
Smalyuk V A, Shvarts D, Betti R, et al. Role of hot-electron preheating in the compression of direct-drive imploding targets with cryogenic D2 ablators[J]. Physical Review Letters, 2008, 100(18): 1459-1469.
|
[4] |
Karasik M, Weaver J L, Aglitskiy Y, et al. Suppression of laser nonuniformity imprinting using a thin high-z coating[J]. Physical Review Letters, 2015, 114: 085001. doi: 10.1103/PhysRevLett.114.085001
|
[5] |
Eimerl D, Campbell E M, Krupke W F, et al. StarDriver: a flexible laser driver for inertial confinement fusion and high energy density physics[J]. Journal of Fusion Energy, 2014, 33(5): 476-488. doi: 10.1007/s10894-014-9697-2
|
[6] |
Garanin S G, Derkach V N, Shnyagin R A. Formation of the uniform irradiation of a target in high-power laser facilities[J]. Quantum Electronics, 2004, 34(5): 427-446. doi: 10.1070/QE2004v034n05ABEH002700
|
[7] |
邓锡铭, 梁向春, 陈泽尊, 等. 用透镜列阵实现大焦斑面的均匀照射[J]. 中国激光, 1985,12(5):3-6. (Deng Ximing, Liang Xiangchun, Chen Zezun, et al. Using lens array to achieve uniform illumination of large focal spot[J]. China Laser, 1985,12(5): 3-6
|
[8] |
Marozas J A. Fourier transform-based continuous phase-plate design technique: a high-pass phase-plate design as an application for OMEGA and the National Ignition Facility[J]. Journal of The Optical Society of America A-optics Image Science and Vision, 2007, 24(1): 74-83. doi: 10.1364/JOSAA.24.000074
|
[9] |
Marozas J A, Kelly J H. Angular spectrum representation of pulsed laser beams with two-dimensional smoothing by spectral dispersion[J]. LLE Rev, 1999, 78: 62-81.
|
[10] |
Regan S, Marozas J A, Kelly J, et al. Experimental investigation of smoothing by spectral dispersion[J]. Journal of The Optical Society of America B-optical Physics, 2000, 17(9): 1483-1489. doi: 10.1364/JOSAB.17.001483
|
[11] |
Regan S, Marozas J A, Craxton R S, et al. Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams[J]. Journal of The Optical Society of America B-optical Physics, 2005, 22(5): 998-1002. doi: 10.1364/JOSAB.22.000998
|
[12] |
Moody J D, Michel P, Divol L, et al. Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma[J]. Nature Physics, 2012, 8(4): 344-349. doi: 10.1038/nphys2239
|
[13] |
Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12(5): 435-448. doi: 10.1038/nphys3736
|
[14] |
Glenzer S H, Froula D H, Divol L, et al. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas[J]. Nature Physics, 2007, 3(10): 716-719. doi: 10.1038/nphys709
|
[15] |
Labaune, Christine. Laser-driven fusion: Incoherent light on the road to ignition[J]. Nature Physics, 2007, 3(10): 680-682. doi: 10.1038/nphys742
|
[16] |
Santos J E, Silva L O, Bingham R, et al. White-light parametric instabilities in plasmas[J]. Physical Review Letters, 2007, 98: 235001. doi: 10.1103/PhysRevLett.98.235001
|
[17] |
Follett R K, Shaw J G, Myatt J F, et al. Thresholds of absolute instabilities driven by a broadband laser[J]. Physics of Plasmas, 2019, 26: 062111. doi: 10.1063/1.5098479
|
[18] |
Palastro J P, Shaw J G, Follett R K, et al. Resonance absorption of a broadband laser pulse[J]. Physics of Plasmas, 2018, 25: 123104. doi: 10.1063/1.5063589
|
[19] |
Eimerl D, Skupsky S, Campbell E M. StarDriver: Recent results on beam smoothing and LPI mitigation[J]. Journal of Physics Conference, 2016, 717: 012015. doi: 10.1088/1742-6596/717/1/012015
|
[20] |
Dorrer C. Statistical analysis of incoherent pulse shaping[J]. Optics Express, 2009, 17(5): 3341-3352. doi: 10.1364/OE.17.003341
|
[21] |
Spaeth M L, Manes K R, Bowers M, et al. National ignition facility laser system performance[J]. Fusion Science and Technology, 2016, 69(1): 366-394. doi: 10.13182/FST15-136
|
[22] |
Cui Y, Gao Y, Rao D, et al. High-energy low-temporal-coherence instantaneous broadband pulse system[J]. Optics Letters, 2019, 44(11): 2859-2862. doi: 10.1364/OL.44.002859
|
[23] |
Dorrer C, Hill E M, Zuegel J D, et al. High-energy parametric amplification of spectrally incoherent broadband pulses[J]. Optics Express, 2020, 28(1): 451-471. doi: 10.1364/OE.28.000451
|
[24] |
Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics[J]. Physical Review Letters, 1961, 7(4): 118-119. doi: 10.1103/PhysRevLett.7.118
|
[25] |
Bloembergen N, Pershan P S. Light waves at the boundary of nonlinear media[J]. Physical Review, 1962, 128(2): 606-622. doi: 10.1103/PhysRev.128.606
|
[26] |
Martinez O E. Achromatic phase matching for second harmonic generation of femtosecond pulses[J]. IEEE Journal Quantum Electronics, 1989, 25(12): 2464-2468. doi: 10.1109/3.40630
|
[27] |
Richman B A, Bisson S E, Trebino V, et al. Efficient broadband second-harmonic generation by dispersive achromatic nonlinear conversionusing only prisms[J]. Opt Lett, 1998, 23: 497. doi: 10.1364/OL.23.000497
|
[28] |
Ashihara S, Shimura T, Kuroda K. Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings[J]. Journal of the Optical Society of America B, 2003, 20(5): 853-856. doi: 10.1364/JOSAB.20.000853
|
[29] |
Chen B Q, Zhang C, Hu C Y, et al. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal[J]. Physical Review Letters, 2015, 115: 083902. doi: 10.1103/PhysRevLett.115.083902
|
[30] |
Zhang T R, Choo H R, Downer M C. Phase and group velocity matching for second harmonic generation of femtosecond pulses[J]. Applied Optics, 1990, 29(27): 3927-3933. doi: 10.1364/AO.29.003927
|
[31] |
Brown M. Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs[J]. Optics Letters, 1998, 23(20): 1591-1593. doi: 10.1364/OL.23.001591
|
[32] |
Wang G Y, Garmire E M. High-efficiency generation of ultrashort second-harmonic pulses based on the erenkov geometry[J]. Optics Letters, 1994, 19(4): 254-256. doi: 10.1364/OL.19.000254
|
[33] |
Pronko M S, Lehmberg R H, Obenschain S P, et al. Efficient second harmonic conversion of broad-band high-peak-power Nd:glass laser radiation using large-aperture KDP crystals in quadrature[J]. IEEE Journal of Quantum Electronics, 1990, 26(2): 337-347. doi: 10.1109/3.44967
|
[34] |
Ji Lailin, Zhu Baoqiang, Liu Chong, et al. Optimization of quadrature frequency conversion with type-II KDP for second harmonic generation of the nanosecond chirp pulse at 1053 nm[J]. Chinese Optics Letters, 2014, 12(3): 70-74.
|
[35] |
Eimerl D, Auerbach J M, Barker C E, et al. Multicrystal designs for efficient third-harmonic generation[J]. Optics Letters, 1997, 22(16): 1208-1210. doi: 10.1364/OL.22.001208
|
[36] |
Babushkin A, Craxton R S, Oskoui S, et al. Demonstration of the dual-tripler scheme for increased-bandwidth third-harmonic generation[J]. Optics Letters, 1998, 23(12): 927-929. doi: 10.1364/OL.23.000927
|
[37] |
Short R W, Skupsky S. Frequency conversion of broad-bandwidth laser light[J]. IEEE Journal of Quantum Electronics, 1990, 26(3): 580-588. doi: 10.1109/3.52136
|
[38] |
Skeldon M D, Craxton R S, Kessler T J, et al. Efficient harmonic generation with a broad-band laser[J]. IEEE Journal of Quantum Electronics, 1992, 28(5): 1389-1399. doi: 10.1109/3.135282
|
[39] |
Nakatsuka M, Miyanaga N, Kanabe T, et al. Partially coherent light sources for ICF experiment[C]// Proc of SPIE. 1993, 1870: 151-162.
|
[40] |
Videau L, Boscheron A C L, Garnier J C, et al. Recent results of optical smoothing on the Phebus laser[C]// Proc of SPIE.1997, 3047: 757-762.
|
[41] |
Boscheron A C, Sauteret C, Migus A, et al. Efficient broadband sum frequency based on controlled phase-modulated input fields: theory for 351-nm ultrabroadband or ultrashort-pulse generation[J]. Journal of The Optical Society of America B-optical Physics, 1996, 13(5): 818-826. doi: 10.1364/JOSAB.13.000818
|
[42] |
Raoult F, Boscheron A C, Husson D, et al. Ultrashort, intense ultraviolet pulse generation by efficient frequency tripling and adapted phase matching[J]. Optics Letters, 1999, 24(5): 354-356. doi: 10.1364/OL.24.000354
|
[43] |
钱列加. 宽频带激光的啁啾匹配型三次谐波转换[J]. 光学学报, 1995, 15(6):662-664. (Qian Liejia. Chirp-matched third harmonic conversion of broadband lasers[J]. Acta Optics Sinica, 1995, 15(6): 662-664 doi: 10.3321/j.issn:0253-2239.1995.06.005
|
[44] |
陈英, 王路露, 刘光灿, 等. 高功率钕玻璃激光的宽带谐波转换技术综述[J]. 激光与光电子学进展, 2014, 51(2):34-41. (Chen Ying, Wang Lulu, Liu Guangcan, et al. Survey on frequency conversion of broadband high power Nd:Glass laser[J]. Progress in Laser and Optoelectronics, 2014, 51(2): 34-41
|
[45] |
Rozenberg E, Arie A. Broadband and robust adiabatic second-harmonic generation by a temperature gradient in birefringently phase-matched lithium triborate crystal[J]. Optics Letters, 2019, 44(13): 3358-3361. doi: 10.1364/OL.44.003358
|
[46] |
Zhu H Y, Wang T, Zheng W G, et al. Efficient second harmonic generation of femtosecond laser at 1 μm[J]. Optics Express, 2004, 12(10): 2150-2155. doi: 10.1364/OPEX.12.002150
|
[47] |
Zheng Wanguo, Qian LieJia, Yuan Peng, et al. Second harmonic generation of femtosecond laser at one micron in a partially deuterated KDP[J]. Chinese Physics Letters, 2006, 23(1): 139-142. doi: 10.1088/0256-307X/23/1/041
|
[48] |
Dmitriev V G, Osipov M V, Puzyrev V N, et al. Nonlinear optical conversion of Nd:glass laser multimode radiation into the second harmonic in KDP crystal[J]. Journal of Physics B, 2012, 45: 165401. doi: 10.1088/0953-4075/45/16/165401
|
[49] |
Vasin B L, Korobkin Y V, Osipov M V, et al. Second-harmonic conversion of partially coherent radiation of neodymium glass laser[J]. Bulletin of the Lebedev Physics Institute, 2013, 40(7): 205-209. doi: 10.3103/S1068335613070063
|
[50] |
Ji L, Zhao X, Liu D, et al. High-efficiency second-harmonic generation of low-temporal-coherent light pulse[J]. Optics Letters, 2019, 44(17): 4359-4362. doi: 10.1364/OL.44.004359
|