Citation: | Chen Yong, Lu Daju, Xie Weiming, et al. Unsteady characteristics of aerodynamic loads on a turret[J]. High Power Laser and Particle Beams, 2020, 32: 081001. doi: 10.11884/HPLPB202032.200113 |
[1] |
关奇, 杜太焦, 陈志华, 等. 亚声速球/柱尾流对激光传输影响的数值模拟[J]. 红外与激光工程, 2017, 46:0906005. (Guan Qi, Du Taijiao, Chen Zhihua, et al. Numerical simulation of laser propagation effects through subsonic hemispherical/cylindrical wake[J]. Infrared and Laser Engineering, 2017, 46: 0906005 doi: 10.3788/IRLA201746.0906005
|
[2] |
董航, 徐明. 转塔气动光学效应时空特性[J]. 光学学报, 2018, 38:1001002. (Dong Hang, Xu Ming. Space-time characteristics of the aero-optical effect around a turret[J]. Acta Optica Sinica, 2018, 38: 1001002 doi: 10.3788/AOS201838.1001002
|
[3] |
Gordeyev S, Jumper E. Fluid dynamics and aero-optics of turrets[J]. Progress in Aerospace Sciences, 2010, 46: 388-400. doi: 10.1016/j.paerosci.2010.06.001
|
[4] |
Mathews E, Wang K, Wang M, et al. LES analysis of hemisphere-on-cylinder turret aero-optics[C]//52nd Aerospace Sciences Meeting. 2014.
|
[5] |
Arad E, Weidenfeld M. Aero-optic calculations of a spherical turret at transonic flow[C]//55th AIAA Aerospace Sciences Meeting. 2017.
|
[6] |
Reynolds T, Saunders D, Presdorf T, et al. Effect of geometric modifications on the flow field of a turret[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2012.
|
[7] |
Morgan P E, Visbal M R. Numerical simulations investigating control of flow over a turret[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2009.
|
[8] |
Mathews E, Wang K, Wang M, et al. Numerical investigation of aero-optical distortions over a hemisphere-on-cylinder turret with gaps[C]//46th AIAA Plasmadynamics and Lasers Conference. 2015.
|
[9] |
张露, 李杰. 基于RANS/LES方法的超声速底部流场数值模拟[J]. 航空学报, 2017, 38:120102. (Zang Lu, Li Jie. Numerical simulations of supersonic base flow field based on RANS/LES approaches[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38: 120102
|
[10] |
Hu J, Xuan H B, Kwok K C S, et al. Study of wind flow over a 6 m cube using improved delayed detached eddy simulation[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2018, 179: 463-474.
|
[11] |
Spalart P R, Jou W H, Strelets M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[J]. Advances in DNS/LES, 1997: 137-148.
|
[12] |
Spalart P R, Deck S, Shur M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20: 181-195. doi: 10.1007/s00162-006-0015-0
|
[13] |
Shur M L, Spalart P R, Strelets M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29: 1638-1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
|
[14] |
Jin G, Braza M. Two-equation turbulence model for unsteady separated flows around airfoils[J]. Journal of American Institute of Aeronautics and Astronautics, 1994, 32(11): 2316-2320. doi: 10.2514/3.12292
|
[15] |
Menter F R, Sunnyvale E I. Zonal two equation k-ω turbulence models for aerodynamic flows[C]//24th Fluid Dynamics Conference. 1993.
|
[16] |
Jameson A, Yoonf S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. Journal of American Institute of Aeronautics and Astronautics, 1987, 25(7): 929-935. doi: 10.2514/3.9724
|