Citation: | Wang Qiannan, Hu Jianbo. Recent progress in micro-mesoscopic study of dynamics of plastic deformation based on large-scale laser facilities[J]. High Power Laser and Particle Beams, 2020, 32: 112010. doi: 10.11884/HPLPB202032.200116 |
[1] |
Shewmon P G, Zackay V F. Response of metals to high velocity deformation[M]. NewYork: Interscience Publisher, 1961: 93-103
|
[2] |
Murr L, Meyers M, Niou C S, et al. Shock-induced deformation twinning in tantalum[J]. Acta materialia, 1997, 45(1): 157-175. doi: 10.1016/S1359-6454(96)00145-0
|
[3] |
Murr L E, Esquivel E. Observations of common microstructural issues associated with dynamic deformation phenomena: Twins, microbands, grain size effects, shear bands, and dynamic recrystallization[J]. Journal of Materials Science, 2004, 39(4): 1153-1168. doi: 10.1023/B:JMSC.0000013870.09241.c0
|
[4] |
Meyers M, Chen Y J, Marquis F, et al. High-strain, high-strain-rate behavior of tantalum[J]. Metallurgical and Materials Transactions A, 1995, 26(10): 2493-2501. doi: 10.1007/BF02669407
|
[5] |
Meyers M A, Gregori F, Kad B, et al. Laser-induced shock compression of monocrystalline copper: characterization and analysis[J]. Acta Materialia, 2003, 51(5): 1211-1228. doi: 10.1016/S1359-6454(02)00420-2
|
[6] |
Huang J, Gray III G. Substructure evolution and deformation modes in shock-loaded niobium[J]. Materials Science and Engineering: A, 1988, 103(2): 241-255. doi: 10.1016/0025-5416(88)90514-9
|
[7] |
Lu C H, Hahn E, Remington B, et al. Phase transformation in tantalum under extreme laser deformation[J]. Scientific Reports, 2015, 5: 15064. doi: 10.1038/srep15064
|
[8] |
Johnson Q, Mitchell A, Keeler RN, et al. X-ray diffraction during shock-wave compression[J]. Physical Review Letters, 1970, 25(16): 1099-1101. doi: 10.1103/PhysRevLett.25.1099
|
[9] |
Jensen B, Gupta Y. X-ray diffraction measurements in shock compressed magnesium doped LiF crystals[J]. Journal of Applied Physics, 2006, 100: 053512. doi: 10.1063/1.2244524
|
[10] |
Jensen B, Gupta Y. Time-resolved X-ray diffraction experiments to examine the elastic-plastic transition in shocked magnesium-doped LiF[J]. Journal of Applied Physics, 2008, 104: 013510. doi: 10.1063/1.2936899
|
[11] |
Turneaure S J, Gupta Y. Material strength determination in the shock compressed state using X-ray diffraction measurements[J]. Journal of Applied Physics, 2011, 109: 123510. doi: 10.1063/1.3597817
|
[12] |
Milathianaki D, Boutet S, Williams G, et al. Femtosecond visualization of lattice dynamics in shock-compressed matter[J]. Science, 2013, 342(6155): 220-223. doi: 10.1126/science.1239566
|
[13] |
Turneaure S J, Renganathan P, Winey J, et al. Twinning and dislocation evolution during shock compression and release of single crystals: real-time X-ray diffraction[J]. Physical Review Letters, 2018, 120: 265503. doi: 10.1103/PhysRevLett.120.265503
|
[14] |
Wehrenberg C, McGonegle D, Bolme C, et al. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics[J]. Nature, 2017, 550(7677): 496-499. doi: 10.1038/nature24061
|
[15] |
Sliwa M, McGonegle D, Wehrenberg C, et al. Femtosecond X-ray diffraction studies of the reversal of the microstructural effects of plastic deformation during shock release of tantalum[J]. Physical Review Letters, 2018, 120: 265502. doi: 10.1103/PhysRevLett.120.265502
|
[16] |
Sharma S M, Turneaure S J, Winey J, et al. Real-time observation of stacking faults in gold shock compressed to 150 GPa[J]. Physical Review X, 2020, 10: 011010.
|
[17] |
Rudd R E, Germann T C, Remington B A, et al. Metal deformation and phase transitions at extremely high strain rates[J]. MRS Bulletin, 2011, 35(12): 999-1006.
|
[18] |
Wang J, Coppari F, Smith R F, et al. X-ray diffraction of molybdenum under ramp compression to 1 TPa[J]. Physical Review B, 2016, 94: 104102. doi: 10.1103/PhysRevB.94.104102
|
[19] |
Wa rk, Justin. Time-resolved X-ray diffraction[J]. Contemporary Physics, 2006, 37(3): 205-218.
|
[20] |
Ping Y, Coppari F. Laser shock XAFS studies at OMEGA facility[J]. High Pressure Research, 2016, 36(3): 303-314. doi: 10.1080/08957959.2016.1196203
|
[21] |
Glendinning S, Weber S, Bell P, et al. Laser-driven planar Rayleigh-Taylor instability experiments[J]. Physical Review Letters, 1992, 69(8): 1201-1204. doi: 10.1103/PhysRevLett.69.1201
|
[22] |
Rosenbluth M N. Handbook of Plasma Physics[M]. 1991, 3: 111
|
[23] |
Kalantar D H, Belak J, Bringa E, et al. High-pressure, high-strain-rate lattice response of shocked materials[J]. Physics of Plasmas, 2003, 10(5): 1569-1576. doi: 10.1063/1.1565118
|
[24] |
Kalantar D H, Belak J F, Collins G W, et al. Direct observation of the alpha-epsilon transition in shock-compressed iron via nanosecond X-ray diffraction[J]. Phys Rev Lett, 2005, 95: 075502. doi: 10.1103/PhysRevLett.95.075502
|
[25] |
Rygg J, Smith R, Lazicki A, et al. X-ray diffraction at the National Ignition Facility[J]. Review of Scientific Instruments, 2020, 91: 043902. doi: 10.1063/1.5129698
|
[26] |
Rygg J R, Eggert J H, Lazicki A E, et al. Powder diffraction from solids in the terapascal regime[J]. Rev Sci Instrum, 2012, 83: 113904. doi: 10.1063/1.4766464
|
[27] |
Yaakobi B, Boehly T R, Meyerhofer D D, et al. EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks[J]. Phys Rev Lett, 2005, 95: 075501. doi: 10.1103/PhysRevLett.95.075501
|
[28] |
Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297-319. doi: 10.1002/cpa.3160130207
|
[29] |
Taylor G. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I[J]. Proceedings of the Royal Society of London, 1950, 201(1065): 192-196.
|
[30] |
Barnes J F, Blewett P J, McQueen R G, et al. Taylor instability in solids[J]. Journal of Applied Physics, 1974, 45(2): 727-732. doi: 10.1063/1.1663310
|
[31] |
Park H S, Lorenz K T, Cavallo R M, et al. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate[J]. Phys Rev Lett, 2010, 104: 135504. doi: 10.1103/PhysRevLett.104.135504
|
[32] |
Park H S, Remington B A, Becker R C, et al. Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures[J]. Physics of Plasmas, 2010, 17: 056314. doi: 10.1063/1.3363170
|
[33] |
Schneider M, Kad B, Meyers M, et al. Laser-induced shock compression of copper: Orientation and pressure decay effects[J]. Metallurgical and Materials Transactions A, 2004, 35(9): 2633-2646. doi: 10.1007/s11661-004-0209-2
|
[34] |
Schneider M S, Kad B, Kalantar D H, et al. Laser shock compression of copper and copper-aluminum alloys[J]. International Journal of Impact Engineering, 2005, 32(1/4): 473-507.
|
[35] |
Foster J M, Comley A J, Case G S, et al. X-ray diffraction measurements of plasticity in shock-compressed vanadium in the region of 10–70 GPa[J]. Journal of Applied Physics, 2017, 122: 025117. doi: 10.1063/1.4994167
|
[36] |
Suggit M, Kimminau G, Hawreliak J, et al. Nanosecond X-ray Laue diffraction apparatus suitable for laser shock compression experiments[J]. Rev Sci Instrum, 2010, 81: 083902. doi: 10.1063/1.3455211
|
[37] |
Suggit M J, Higginbotham A, Hawreliak J A, et al. Nanosecond white-light Laue diffraction measurements of dislocation microstructure in shock-compressed single-crystal copper[J]. Nature Communications, 2012, 3(6): 1224-1229.
|
[38] |
Stubley P G, Higginbotham A, Wark J S. Inelastic response of silicon to shock compression[J]. Computational Materials Science, 2016, 6: 121-126.
|
[39] |
Wehrenberg C, Comley A, Barton N, et al. Lattice-level observation of the elastic-to-plastic relaxation process with subnanosecond resolution in shock-compressed Ta using time-resolved in situ Laue diffraction[J]. Physical Review B, 2015, 92: 104305. doi: 10.1103/PhysRevB.92.104305
|
[40] |
Murphy WJ, Higginbotham A, Kimminau G, et al. The strength of single crystal copper under uniaxial shock compression at 100 GPa[J]. Journal of Physics: Condensed Matter, 2010, 22: 065404. doi: 10.1088/0953-8984/22/6/065404
|
[41] |
Comley A J, Maddox B R, Rudd R E, et al. Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband X-ray Laue diffraction[J]. Phys Rev Lett, 2013, 110: 115501. doi: 10.1103/PhysRevLett.110.115501
|
[42] |
Hawreliak J A, El-Dasher B, Lorenzana H, et al. In situ X-ray diffraction measurements of the c/a ratio in the high-pressure ε phase of shock-compressed polycrystalline iron[J]. Physical Review B, 2011, 83: 144114. doi: 10.1103/PhysRevB.83.144114
|
[43] |
Remington B A, Park H S, Casey D T, et al. Rayleigh-Taylor instabilities in high-energy density settings on the National Ignition Facility[J]. Proceedings of the National Academy of Sciences, 2019, 116(37): 18233-18238. doi: 10.1073/pnas.1717236115
|
[44] |
Lorenz K T, Edwards M J, Glendinning S G, et al. Accessing ultrahigh-pressure, quasi-isentropic states of matter[J]. Physics of Plasmas, 2005, 12: 056309. doi: 10.1063/1.1873812
|
[45] |
Stebner A P, Wehrenberg C E, Li B, et al. Strength of tantalum shocked at ultrahigh pressures[J]. Materials Science and Engineering: A, 2018, 732: 220-227. doi: 10.1016/j.msea.2018.06.105
|
[46] |
Krygier A, Powell P, McNaney J, et al. Extreme hardening of Pb at high pressure and strain rate[J]. Physical Review Letters, 2019, 123: 205701. doi: 10.1103/PhysRevLett.123.205701
|
[47] |
Steinberg D, Cochran S, Guinan M. A constitutive model for metals applicable at high-strain rate[J]. Journal of Applied Physics, 1980, 51(3): 1498-1504. doi: 10.1063/1.327799
|
[48] |
Steinberg D, Lund C. A constitutive model for strain rates from 10−4 to 106 s−1[J]. Journal of Applied Physics, 1989, 65(4): 1528-1533. doi: 10.1063/1.342968
|
[49] |
Preston D L, Tonks D L, Wallace D C. Model of plastic deformation for extreme loading conditions[J]. Journal of Applied Physics, 2003, 93(1): 211-220. doi: 10.1063/1.1524706
|
[50] |
Barton N, Bernier J, Becker R, et al. A multiscale strength model for extreme loading conditions[J]. Journal of Applied Physics, 2011, 109: 073501. doi: 10.1063/1.3553718
|
[51] |
Becker R, Arsenlis A, Marian J, et al. Continuum level formulation and implementation of a multi-scale model for vanadium[R]. LLNLTR-416095, 2009.
|
[52] |
Gleason A E. Soft metal gains Hulk-like strength[J]. Physics, 2019, 12: 125. doi: 10.1103/Physics.12.125
|