Citation: | Wang Yao, Liu Zhiming, Wan Yaping, et al. Energy spectrum nuclide recognition method based on long short-term memory neural network[J]. High Power Laser and Particle Beams, 2020, 32: 106001. doi: 10.11884/HPLPB202032.200118 |
[1] |
Liang Chen, Yi Xiangwei. Nuclide identification algorithm based on K–L transform and neural networks[J]. Nuclear Inst and Methods in Physics Research A, 2009, 598(2): 450-453.
|
[2] |
王一鸣, 魏义祥. 基于模糊逻辑的γ能谱核素识别[J]. 清华大学学报(自然科学版), 2012, 52(12):1736-1740. (Wang Yiming, Wei Yixiang. Fuzzy logic based nuclide identification for γ ray spectra[J]. Journal of Tsinghua University(Science and Technology), 2012, 52(12): 1736-1740
|
[3] |
问斯莹, 王百荣, 肖刚, 等. 基于序贯贝叶斯方法的核素识别算法研究[J]. 核电子学与探测术, 2016, 36(2):179-183. (Wen Siying, Wang Bairong, Xiao Gang, et al. The study on nuclide identification algorithm based on sequential Bayesian analysis[J]. Nuclear Electronics and Detection Technology, 2016, 36(2): 179-183
|
[4] |
张江梅, 季海波, 冯兴华, 等. 基于稀疏表示的核素能谱特征提取及核素识别[J]. 强激光与粒子束, 2018, 30:046003. (Zhang Jiangmei, Ji Haibo, Feng Xinghua, et al. Nuclide spectrum feature extraction and nuclide identification based on sparse representation[J]. High Power Laser and Particle Beams, 2018, 30: 046003
|
[5] |
胡浩行, 张江梅, 王坤朋, 等. 卷积神经网络在复杂核素识别中的应用[J]. 传感器与微系统, 2019, 38(10):154-156, 160. (Hu Haohang, Zhang Jiangmei, Wang Kunpeng, et al. Application of convolutional neural networks in identification of complex nuclides[J]. Transducer and Microsystem Technologies, 2019, 38(10): 154-156, 160
|
[6] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9: 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|
[7] |
Graves A, Jaitly N, Mohamed A. Hybrid speech recognition with deep bidirectional LSTM[C]//IEEE Workshop on Automatic Speech Recognition and Understanding. 2013.
|
[8] |
Hayashi T, Watanabe S, Toda T, et al. Duration-controlled LSTM for polyphonic sound event detection[J]. IEEE ACM Transactions on Audio, Speech and Language Processing, 2017, 25(11): 2059-2070.
|
[9] |
任智慧, 徐浩煜, 封松林, 等. 基于LSTM网络的序列标注中文分词法[J]. 计算机应用研究, 2017, 34(5):1321-1324, 1341. (Ren Zhihui, Xu Haoyu, Feng Songlin, et al. Sequence labeling Chinese word segmentation method based on LSTM networks[J]. Application Research of Computers, 2017, 34(5): 1321-1324, 1341
|
[10] |
Ran J. A self-attention based LSTM network for text classification[J]. Journal of Physics: Conference Series, 2019, 1207: 12008. doi: 10.1088/1742-6596/1207/1/012008
|
[11] |
梁军, 柴玉梅, 原慧斌, 等. 基于极性转移和LSTM递归网络的情感分析[J]. 中文信息学报, 2015, 29(5):152-159. (Liang Jun, Chai Yumei, Yuan Huibin, et al. Polarity shifting and LSTM based recursive networks for sentiment analysis[J]. Journal of Chinese Information Processing, 2015, 29(5): 152-159
|
[12] |
季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6):34-42. (Ji Xuewu, Fei Cong, He Xiangkun, et al. Intention recognition and trajectory prediction for vehicles using LSTM network[J]. China Journal of Highway and Transport, 2019, 32(6): 34-42
|
[13] |
祝强, 李少康, 徐臻. LM算法求解大残差非线性最小二乘问题研究[J]. 中国测试, 2016, 42(3):12-16. (Zhu Qiang, Li Shaokang, Xu Zhen. Study of solving nonlinear least squares under large residual based on Levenberg-Marquardt algorithm[J]. China Measurement and Test, 2016, 42(3): 12-16
|
[14] |
高伟伟, 王广龙, 陈建辉, 等. 多尺度变步长最小均方自适应算法在光纤陀螺数据处理中的应用[J]. 强激光与粒子束, 2014, 26:071002. (Gao Weiwei, Wang Guanglong, Cheng Jianhui, et al. Application of multiple-scale variable step least mean square adaptive algorithm to fiber optic gyroscope data processing[J]. High Power Laser and Particle Beams, 2014, 26: 071002 doi: 10.3788/HPLPB20142607.71002
|
[15] |
Li Q, Huang Y, Song X, et al. Moving window smoothing on the ensemble of competitive adaptive reweighted sampling algorithm[J]. Spectrochimica Acta. Part A, Molecular And Biomolecular Spectroscopy, 2019, 214: 129-138. doi: 10.1016/j.saa.2019.02.023
|
[16] |
Bolstad B M, Irizarry R A, Astrand M, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias[J]. Bioinformatics, 2003, 19(2): 185-193. doi: 10.1093/bioinformatics/19.2.185
|