Citation: | Zhong Jiayong, An Weiming, Ping Yongli, et al. Introduction of laboratory astrophysics with intense lasers[J]. High Power Laser and Particle Beams, 2020, 32: 092003. doi: 10.11884/HPLPB202032.200123 |
[1] |
Drake R P. Introduction to high-energy-density physics[M]. Berlin Heidelberg: Springer, 2006.
|
[2] |
Rogers F J, Iglesias C A. Astrophysical opacity[J]. Science, 1994, 263(5143): 50-55. doi: 10.1126/science.263.5143.50
|
[3] |
Pound M W. Scaled eagle nebula experiments on NIF[R/OL]. http://www.osti.gov/scitech/biblio/1348848.
|
[4] |
Grosskopf M Y, Drake R P, Miles A R, et al. Modeling of aspheric, diverging hydrodynamic instability experiments on the National Ignition Facility[J]. High Energy Dens Phys, 2013, 9: 439-447. doi: 10.1016/j.hedp.2013.04.003
|
[5] |
Zhong J, Li Y, Wang X, et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers[J]. Nature Physics, 2010, 6: 984. doi: 10.1038/nphys1790
|
[6] |
Casey D T, Sayre D B, Brune C R, et al. Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion[J]. Nature Physics, 2017, 13(12): 1227. doi: 10.1038/nphys4220
|
[7] |
Remington B A, Drake R P, Ryutov D D, et al. Experimental astrophysics with high power lasers and Z pinches[J]. Reviews of Modern Physics, 2006, 78(3): 755-807. doi: 10.1103/RevModPhys.78.755
|
[8] |
Lebedev S V, Frank A, Ryutov D D. Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities[J]. Review of Modern Physics, 2019, 91: 025002. doi: 10.1103/RevModPhys.91.025002
|
[9] |
Takabe H. Astrophysics with intense and ultra-intense lasers laser "astrophysics"[J]. Progress of Theoretical Physics Supplements, 2001, 143: 202. doi: 10.1143/PTPS.143.202
|
[10] |
Hansen C J, Kawaler S D, Trimble V. Stellar interiors: physical principles, structure, and evolution [M]. 2nd ed. New York: Springer, 2004, .
|
[11] |
王菲鹿, 赵刚, 张杰. 天体辐射不透明度的实验室研究[J]. 物理, 2002, 31(5):298-301. (Wang Feilu, Zhao Gang, Zhang Jie. Laboratory studies of astrophysical opacity[J]. Physics, 2002, 31(5): 298-301 doi: 10.3321/j.issn:0379-4148.2002.05.008
|
[12] |
Remington B A, Arnett D, Drake P, et al. Modeling astrophysical phenomena in the laboratory with intense lasers[J]. Science, 1999, 284: 1488-1493. doi: 10.1126/science.284.5419.1488
|
[13] |
Cox A N, Tabor J E. Radiative opacity tables for 40 stellar mixtures[J]. The Astrophysical Journal Supplement, 1976, 31: 271-312. doi: 10.1086/190383
|
[14] |
Da Silva L B, MacGowan B J, Kania D R, et al. Absorption measurements demonstrating the importance of <italic>n</italic>=0 transitions in the opacity of iron[J]. Phys Rev Lett, 1992, 69: 438-441. doi: 10.1103/PhysRevLett.69.438
|
[15] |
Springer P T, Fields D J, Wilson B G, et al. Spectroscopic absorption measurements of an iron plasma[J]. Phys Rev Lett, 1992, 69: 3735-3738. doi: 10.1103/PhysRevLett.69.3735
|
[16] |
Iglesias C A, Rogers F J. Opacity tables for cepheid variables[J]. The Astrophysical Journal Letters, 1991, 371: L73-L75. doi: 10.1086/186005
|
[17] |
Rogers F J, Iglesias, C A. Radiative atomic Rosseland mean opacity tables[J]. The Astrophysical Journal Supplement, 1992, 79: 507-568. doi: 10.1086/191659
|
[18] |
Delahaye F, Pinsonneault M. Comparison of radiative accelerations obtained with atomic data from OP and OPAL[J]. The Astrophysical Journal Supplement, 2005, 625: 563-575. doi: 10.1086/429583
|
[19] |
Asplund M, Grevesse N, Sauval J A, et al. The chemical composition of the Sun[J]. Annu. Rev. Astronomy Astrophysics, 2009, 47: 481-22. doi: 10.1146/annurev.astro.46.060407.145222
|
[20] |
Caffau E, Ludwig H G, Steffen M. Solar chemical abundances determined with a CO5BOLD 3D model atmosphere[J]. Solar Physics, 2011, 268: 255-269. doi: 10.1007/s11207-010-9541-4
|
[21] |
Basu S, Antia H M. Helioseismology and solar abundances[J]. Physics Reports, 2008, 457: 217-283. doi: 10.1016/j.physrep.2007.12.002
|
[22] |
Basu S, Grevesse N, Mathis S, et al. Understanding the internal chemical composition and physical processes of the solar interior[J]. Space Science Reviews, 2014, 196: 49-77.
|
[23] |
Bahcall J N, Serenelli A M, Pinsonneault M. How accurately can we calculate the depth of the solar convective zone[J]. Astrophys J, 2004, 614: 464-471. doi: 10.1086/423027
|
[24] |
Serenelli A M, Basu S, Ferguson J W, et al. New solar composition: the problem with solar models revisited[J]. Astrophys J, 2009, 705: L123-L127. doi: 10.1088/0004-637X/705/2/L123
|
[25] |
Bailey J E, Nagayama T, Loisel G P, et al. A higher-than-predicted measurement of iron opacity at solar interior temperatures[J]. Nature, 2015, 517: 56-59. doi: 10.1038/nature14048
|
[26] |
Zweibel E. The seeds of a magnetic universe[J]. Physics, 2013, 6: 85.
|
[27] |
Gregori G, Ravasio A, Murphy C D, et al. Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves[J]. Nature, 2012, 481: 480-483. doi: 10.1038/nature10747
|
[28] |
Zhong J, Yuan X, Han B, et al. Magnetic reconnection driven by intense lasers[J]. High Power Laser Science & Engineering, 2018, 6(3): 89-105.
|
[29] |
Warren J S, Hughes J P, Badenes C, et al. Cosmic-ray acceleration at the forward shock in Tycho's supernova remnant: Evidence from Chandra X-ray observations[J]. Astrophys J, 2005, 634: 376. doi: 10.1086/496941
|
[30] |
Fiore M, Silva L O, Ren C, et al. Baryon loading and the Weibel instability in gamma-ray bursts[J]. Mon Not R Astron Soc, 2006, 372: 1851. doi: 10.1111/j.1365-2966.2006.10980.x
|
[31] |
Weibel E S. Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution[J]. Phys Rev Lett, 1959, 2(3): 83. doi: 10.1103/PhysRevLett.2.83
|
[32] |
Fried B D. Mechanism for instability of transverse plasma waves[J]. Phys Fluids, 1959, 2: 337.
|
[33] |
Huntington C M, Fiuza F, Ross J S, et al. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows[J]. Nature Physics, 2013, 11(2): 173-176.
|
[34] |
Okada T, Ogawa K. Saturated magnetic field for Weibel instability in ultra intense laser-plasma interactions[J]. Journal of Plasma Physics, 2007, 14: 072702. doi: 10.1063/1.2746023
|
[35] |
Meinecke J, Doyle H W, Miniati F, et al. Turbulent amplification of magnetic fields in laboratory laser-produced shock waves[J]. Nature Physics, 2014, 10(7): 520-524. doi: 10.1038/nphys2978
|
[36] |
Ryutov D, Drake R P, Kane J, et al. Similarity criteria for the laboratory simulation of supernova hydrodynamics[J]. The Astrophysical Journal, 1999, 518(2): 821-832. doi: 10.1086/307293
|
[37] |
RyutovD, Drake RP, Remington B A. Criteria for scaled laboratory simulations of astrophysical MHD phenomena[J]. The Astrophysical Journal Supplement Series, 2000, 127(2): 465-468. doi: 10.1086/313320
|
[38] |
RyutovD, Remington B A, Robey H F, et al. Magnetohydrodynamic scaling: From astrophysics to the laboratory[J]. Physics of Plasmas, 2001, 8(5): 1804-1816. doi: 10.1063/1.1344562
|
[39] |
Bouquet S, Falize E, Michaut C, et al. From lasers to the universe: scaling laws in laboratory astrophysics[J]. High Energy Density Physics, 2010, 6(4): 368-380. doi: 10.1016/j.hedp.2010.03.001
|
[40] |
Falize E, Michaut C, Bouquet S. Similarity properties and scaling laws of radiation hydrodynamic flows in laboratory astrophysics[J]. The Astrophysical Journal, 2011, 730(2): 96-102. doi: 10.1088/0004-637X/730/2/96
|
[41] |
Ryutov D, Remington B A. Similarity laws for collisionless interaction of superstrong electromagnetic fields with a plasma[J]. Plasma Physics and Controlled Fusion, 2006, 48(3): L23-L31. doi: 10.1088/0741-3335/48/3/L01
|
[42] |
Ryutov D, Remington B A. Scaling laws for collisionless laser-plasma interactions of relevance to laboratory astrophysics[J]. Astrophysics and Space Science, 2007, 307(1/3): 291-296.
|
[43] |
Remington B A, Drake R P, Takabe H, et al. A review of astrophysics experiments on intense lasers[J]. Physics of Plasmas, 2000, 7(5): 1641-1652. doi: 10.1063/1.874046
|
[44] |
Li C K, Tzeferacos P, Lamb D, et al. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet[J]. Nature Communications, 2016, 7: 13081. doi: 10.1038/ncomms13081
|
[45] |
Golub L, Bookbinder J, Deluca E, et al. A new view of the solar corona from the transition region and coronal explorer (TRACE)[J]. Phys Plasmas, 1991, 6(5): 2205-2216.
|
[46] |
Loureiro N, Uzdensky D A. Magnetic reconnection: from the Sweet-Parker model to stochastic plasmoid chains[J]. Plasma Phys Control Fusion, 2016, 58: 014021. doi: 10.1088/0741-3335/58/1/014021
|
[47] |
Masuda S, Kosugi T, Hara H, et al. A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection[J]. Nat Phys, 1994, 371(6497): 495-497. doi: 10.1038/371495a0
|
[48] |
Willingale L, Nilson P M, Kaluza M C, et al. Proton deflectometry of a magnetic reconnection geometry[J]. Phys Plasmas, 2010, 17: 043104. doi: 10.1063/1.3377787
|
[49] |
Nilson P M, Willingale L, Kaluza M C, et al. Bidirectinal jet formation during driven magnetic reconnection in two-beam laser-plasma interactions[J]. Phys Plasmas, 2008, 15: 092701. doi: 10.1063/1.2966115
|
[50] |
Nilson P M, Willingale L, Kaluza M C, et al. magnetic reconnection and plasma dynamics in two-beam laser-solid interactions[J]. Phys Rev Lett, 2006, 97: 255001.
|
[51] |
Li C K, Seguin F H, Frenje J A, et al. Observation of megagauss field topology changes due to magnetic reconnection in laser-produced plasmas[J]. Phys Rev Lett, 2007, 99: 055001.
|
[52] |
Fiksel G, Fox W, Bhattacharjee A, et al. Magnetic reconnection between colliding magnetized laser-produced plasma plumes[J]. Phys Rev Lett, 2014, 113: 105003.
|
[53] |
李彦霏, 李玉同. 强激光实验室天体物理研究进展[J]. 物理, 2016, 45(2):80-87. (Li Yanfei, Li Yutong. Recent progress of high-power laser driven laboratory astrophysics[J]. Physics, 2016, 45(2): 80-87 doi: 10.7693/wl20160202
|
[54] |
Brady P, Ditmire T, Horton W, et al. Laboratory experiments simulating solar wind driven magnetospheres[J]. Physice of Plasmas, 2009, 16: 043112. doi: 10.1063/1.3085786
|
[55] |
Zhang K, Zhong J Y, Wang J Q, et al. Modeling the interaction of solar wind with a dipole magnetic field with Shenguang II intense lasers[J]. High Energy Density Physics, 2015, 17: 32-37. doi: 10.1016/j.hedp.2014.11.001
|
[56] |
Katsukawa Y, Berger T E, Ichimoto K, et al. Small-scale jetlike features in penumbral chromospheres[J]. Science, 2007, V318: 1594-1596.
|
[57] |
Blandford R D, Znajek R L. Electromagnetic extraction of energy from Kerr black holes[J]. Monthly Notices of the Royal Astronomical Society, 1977, 179: 433-456. doi: 10.1093/mnras/179.3.433
|
[58] |
Blandford R D, Payne D G. Hydromagnetic flows from accretion disks and the production of radio jets[J]. Monthly Notices of the Royal Astronomical Society, 1982, 199: 883-903. doi: 10.1093/mnras/199.4.883
|
[59] |
Gao L, Liang E, Lu Y, et al. Mega-gauss plasma jet creation using a ring of laser beams[J]. Astrophys J Lett, 2019, 873: L11. doi: 10.3847/2041-8213/ab07bd
|
[60] |
Lu Y, Tzeferacos P, Liang E, et al. Numerical simulation of magnetized jet creation using a hollow ring of laser beams[J]. Phys Plasmas, 2019, 26: 022902. doi: 10.1063/1.5050924
|
[61] |
Albertazzi B, Ciardi A, Nakatsutsumi M, et al. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field[J]. Science, 2014, 346: 325-328. doi: 10.1126/science.1259694
|
[62] |
王敏. 大尺度赫比格-哈罗天体的光学研究进展[J]. 天文学进展, 2002, 20(1):59-73. (Wang Min. Progress in optical studies on parsec-scale Herbig-Haro flows[J]. Progress in Astronomy, 2002, 20(1): 59-73 doi: 10.3969/j.issn.1000-8349.2002.01.006
|
[63] |
王红池. 赫比格-哈罗天体高分辨观测研究进展[J]. 天文学进展, 2000, 18(3):216-228. (Wang Hongchi. Progress in observational studies with high spatial resolution on Herbig-Haro objects[J]. Progeress in Astronomy, 2000, 18(3): 216-228 doi: 10.3969/j.issn.1000-8349.2000.03.004
|
[64] |
Kajdic P, Reipurth B, Raga A C, et al. Proper motions of the HH 110/270 system[J]. Astrophys J, 2012, 143: 106.
|
[65] |
Yuan D W, Wu Junfeng, Li Yutong, et al. Modeling supersonic-jet deflection in the Herbig-Haro 110-270 system with high-power lasers[J]. Astrophys J, 2015, 815: 46. doi: 10.1088/0004-637X/815/1/46
|
[66] |
Remington B A. Experiments in ICF, materials science, and astrophysics[M]. Edward Teller Lectures: Lasers and Inertial Fusion Energy, 2013
|
[67] |
Kuranz C C, Park H S, Huntington C M, et al. How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants[J]. Nature Communications, 2018, 9(1): 1564. doi: 10.1038/s41467-018-03548-7
|
[68] |
Gómez, Daniel O, Deluca E E, Mininni P D. Simulations of the Kelvin-Helmholtz instability driven by coronal mass ejections in the turbulent corona[J]. Astrophysical Journal, 2016, 818(2): 126. doi: 10.3847/0004-637X/818/2/126
|
[69] |
Price D J, Rosswog S. Producing ultrastrong magnetic fields in neutron star mergers[J]. Science, 2006, 312(5774): 719-722. doi: 10.1126/science.1125201
|
[70] |
Hasegawa H, Fujimoto M, Phan T D, et al. Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices[J]. Nature, 2004, 430(7001): 755-758. doi: 10.1038/nature02799
|
[71] |
Wan W C, Malamud G, Shimony A, et al. Observation of single-mode, Kelvin-Helmholtz instability in a supersonic flow[J]. Phys Rev Lett, 2015, 115: 145001.
|
[72] |
Sun W, Zhong J Y, Zhang S, et al. The effect on the linear stage evolution of Kelvin-Helmholtz instability with external magnetic field[J]. High Energy Dens Phys, 2019, 31: 47-51. doi: 10.1016/j.hedp.2019.02.003
|
[73] |
Sun W, Zhong J Y, Lei Z, et al. Suppressing Kelvin-Helmholtz instability with an external magnetic field[J]. Plasma Phys Control Fusion, 2020, 60: 065007.
|
[74] |
Ferland G, Savin D W. Spectroscopic challenges of photoionized plasmas[J]. Publications of the Astronomical Society of the Pacific, 2001, 113: 1024-024. doi: 10.1086/322922
|
[75] |
Han Bo, Wang Feilu, Salzmann D, et al. Modeling non-local thermodynamic equilibrium plasma using the Flexible Atomic Code data[J]. Publications of the Astronomical Society of Japan, 2015, 67: 29.
|
[76] |
韩波, 王菲鹿, 梁贵云, 等. 实验室光致电离等离子体中激发过程的研究[J]. 物理学报, 2016, 65:110503. (Han Bo, Wang FeiLu, Liang Guiyun, et al. Excitation processes in experimental photoionized plasmas[J]. Acta Physica Sinica, 2016, 65: 110503 doi: 10.7498/aps.65.110503
|
[77] |
Foord M E. Charge-state distribution and Doppler effect in an expanding photoionized plasma[J]. Phys Rev Lett, 2004, 93: 055002.
|
[78] |
Shinsuke F, Hideaki T, Norimasa Y, et al. X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion[J]. Nature Physics, 2009, 5: 821. doi: 10.1038/nphys1402
|
[79] |
Wang Feilu, Salzmann D, Zhao Gang, et al. Time-dependent simulation of photoionized plasma created by laboratory blackbody radiator[J]. The Astrophysical Journal, 2009, 706: 592-598. doi: 10.1088/0004-637X/706/1/592
|
[80] |
Edward H, Steven R. Photoionized astrophysical plasmas in the laboratory[J]. Physics of Plasma, 2010, 17: 103301. doi: 10.1063/1.3484225
|
[81] |
Bao Lihua, Wu Zeqing, Duan Bin, et al. Simulations of the spectrum from a photoionized Si plasma[J]. Physics of Plasma, 2011, 18: 023301. doi: 10.1063/1.3551737
|
[82] |
Wu Zeqing, Duan Bin, Li Yueming, et al. Time-dependent simulation of the spectrum from a photoionized Si plasma[J]. High Energy Density Physics, 2017, 23: 153-158. doi: 10.1016/j.hedp.2017.04.006
|
[83] |
Loisel G P, Bailey D A, Liedahl D A, et al. Benchmark experiment for photoionized plasma emission from accretion-powered X-ray sources[J]. Phys Rev Lett, 2017, 119: 075001. doi: 10.1103/PhysRevLett.119.075001
|
[84] |
White S, Irwin R, Warwick J R, et al. Production of photoionized plasmas in the laboratory with X-ray line radiation[J]. Physical Review E, 2018, 97: 063203. doi: 10.1103/PhysRevE.97.063203
|
[85] |
Bailie D, Hyland C, Singh R L, et al. An investigation of the L-shell X-ray conversion efficiency for laser-irradiated tin foils[J]. Plasma Science and Technology, 2020, 22: 045201. doi: 10.1088/2058-6272/ab6188
|
[86] |
Kotera K, Olinto A V. The Astrophysics of ultrahigh-energy cosmic rays[J]. Annual Review of Astronomy & Astrophysics, 2011, 49(1): 119-153.
|
[87] |
Fermi E. On the origin of the cosmic radiation[J]. Phys Rev, 1949, 75: 169-174.
|
[88] |
Scholer M. Diffusive acceleration[M]. New York: John Wiley & Sons, 1985: 287.
|
[89] |
Sarris E T, Van Allen J A. Effects of interplanetary shock waves on energetic charged particles[J]. Journal of Geophysical Research, 1974, 79(28): 4157-4173. doi: 10.1029/JA079i028p04157
|
[90] |
Fu H S, Xu Y, Vaivads A, et al. Super-efficient electron acceleration by an isolated magnetic reconnection[J]. Astrophysical Journal, 2019, 870(2): L22. doi: 10.3847/2041-8213/aafa75
|
[91] |
Hoshino M M. Stochastic particle acceleration in multiple magnetic islands during reconnection[J]. Phys Rev Lett, 2012, 108: 135003. doi: 10.1103/PhysRevLett.108.135003
|
[92] |
Egedal J, Daughton W, Le A. Large-scale electron acceleration by parallel electric fields during magnetic reconnection[J]. Nature Physics, 2012, 8(4): 321-324. doi: 10.1038/nphys2249
|
[93] |
Drake J F, Swisdak M, Che H, et al. Electron acceleration from contracting magnetic islands during reconnection[J]. Nature Physics, 2006, 443(7111): 553-556. doi: 10.1038/nature05116
|
[94] |
Zhong J Y, Lin J, Li Y T, et al. Relativistic electrons produced by reconnecting electric fields in a laser-driven bench-top solar flare[J]. Astrophys J Suppl Ser, 2016, 225: 30. doi: 10.3847/0067-0049/225/2/30
|
[95] |
Dennis B R. Solar flare hard X-ray observations[J]. Solar Physics, 1988, 118: 49-94. doi: 10.1007/BF00148588
|
[96] |
Klebesadel R W, Strong I B, Olson R A. Observations of gamma-ray bursts of cosmic origin[J]. The Astrophysical Journal, 1973, 182: L85-L88. doi: 10.1086/181225
|
[97] |
Metzger M R, Djorgovski S G, Kulkarni S R, et al. Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997[J]. Nature, 1997, 387(6636): 878-880. doi: 10.1038/43132
|
[98] |
Piran T. The physics of gamma-ray bursts[J]. Reviews of Modern Physics, 2004, 76(4): 1143.
|
[99] |
Zhang B, Mészáros P. Gamma-ray bursts: progress, problems & prospects[J]. International Journal of Modern Physics A, 2004, 19(15): 2385-2472. doi: 10.1142/S0217751X0401746X
|
[100] |
Lazzati D, Perna R, Morsony B J, et al. Late time afterglow observations reveal a collimated relativistic jet in the ejecta of the binary neutron star merger GW170817[J]. Phys Rev Lett, 2017, 120: 241103.
|
[101] |
Beloborodov A M. Radiation front sweeping the ambient medium of gamma-ray bursts[J]. The Astrophysical Journal, 2002, 565(2): 808-828. doi: 10.1086/324195
|
[102] |
Alkofer R, Hecht M B, Roberts C D, et al. Pair creation and an X-ray free electron laser[J]. Phys Rev Lett, 2001, 87: 193902. doi: 10.1103/PhysRevLett.87.193902
|
[103] |
Cowan T E, Perry M D, Key M H, et al. High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments[J]. Laser and Particle Beams, 1999, 17(4): 773-783. doi: 10.1017/S0263034699174238
|
[104] |
Wilks S C, Chen H, Liang E, et al. Electron-positron plasmas created by ultra-intense laser pulses interacting with solid targets[J]. Astrophysics and Space Science, 2005, 298: 347-355. doi: 10.1007/s10509-005-3967-4
|
[105] |
Myatt J, Delettrez J A, Maximov A V, et al. Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation[J]. Physical Review E, 2009, 79: 066409. doi: 10.1103/PhysRevE.79.066409
|