Citation: | Zhang Bin, Li Ying, Liu Binghai. 1106 nm Q-switched Nd:GAGG laser using gold nanocages as saturable absorbers[J]. High Power Laser and Particle Beams, 2020, 32: 101002. doi: 10.11884/HPLPB202032.200127 |
[1] |
Chen Y F, Lan Y P, Tsai S W. High-power diode-pumped actively Q-switched Nd:YAG laser at 1123 nm[J]. Optics Communications, 2004, 234(1): 309-313.
|
[2] |
Booth I J, Archambault J L, Ventrudo B F. Photodegradation of near-infrared-pumped Tm(3+)-doped ZBLAN fiber upconversion lasers[J]. Optics Letters, 1996, 21(5): 348-350. doi: 10.1364/OL.21.000348
|
[3] |
Wang Zhichao, Peng Qinjun, Bo Yong, et al. Yellow-green 52.3 W laser at 556 nm based on frequency doubling of a diode side-pumped Q-switched Nd:YAG laser[J]. Applied Optics, 2010, 49(18): 3465-3469. doi: 10.1364/AO.49.003465
|
[4] |
Jia Z T, Zhang B T, Li Y B, et al. Continuous-wave and passively Q-switched laser of Nd:LGGG crystal at 0.93 μm[J]. Laser Physics Letters, 2011, 9(1): 20-25.
|
[5] |
Kuwano Y, Saito S, Hase U. Crystal growth and optical properties of Nd:GGAG[J]. Journal of crystal growth, 1988, 92(1/2): 17-22.
|
[6] |
Zhang J, Tao X T, Dong C M, et al. Crystal growth, optical properties, and CW laser operation at 1.06 μm of Nd:GAGG crystals[J]. Laser Physics Letters, 2008, 6(5): 355-358.
|
[7] |
Feng Chao, Liu Mingyi, Li Yanbin, et al. Gold nanorods saturable absorber for Q-switched Nd:GAGG lasers at 1 μm[J]. Applied Physics B-Lasers and Optics, 2017, 123(3): 81. doi: 10.1007/s00340-017-6666-2
|
[8] |
Li Yanbin, Feng Chao, Jia Zhitai, et al. Crystal growth, spectra and passively Q-switched laser at 1106 nm of Nd:Gd3AlGa4O12 crystal[J]. Journal of Alloys and Compounds, 2020, 814: 152248. doi: 10.1016/j.jallcom.2019.152248
|
[9] |
Li Xianlei, Xu Jinlong, Wu Yongzhong, et al. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser[J]. Optics Express, 2011, 19(10): 9950-9955. doi: 10.1364/OE.19.009950
|
[10] |
Koechner W. Solid-state laser engineering[M]. 6th ed. New York: Springer, 2006: 488-533.
|
[11] |
Fluck R, Braun B, Gini E, et al. Passively Q-switched 1.34 μm Nd:YVO4 microchip laser with semiconductor saturable-absorber mirrors[J]. Optics Letters, 1997, 22(13): 991-993. doi: 10.1364/OL.22.000991
|
[12] |
Set S Y, Yaguchi H, Tanaka Y, et al. Laser mode locking using a saturable absorber incorporating carbon nanotubes[J]. Journal of Lightwave Technology, 2004, 22(1): 51-56. doi: 10.1109/JLT.2003.822205
|
[13] |
Zhang Huahian, Li Ming, Chen Xiaohan, et al. Graphene based passively Q-switched Nd:YAG eye-safe laser[J]. Chinese Physics Letters, 2014, 31: 074201. doi: 10.1088/0256-307X/31/7/074201
|
[14] |
Lou Fei, Zhao Ruwei, He Jingliang, et al. Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS2 saturable absorber[J]. Photonics Research, 2015, 3(2): 25-29. doi: 10.1364/PRJ.3.000A25
|
[15] |
Liu X, Yang K, Zhao S, et al. High-power passively Q-switched 2 μm all-solid-state laser based on a Bi2Te3 saturable absorber[J]. Photonics Research, 2017, 5(5): 461-466. doi: 10.1364/PRJ.5.000461
|
[16] |
Zhang Haikun, He Jingliang, Wang Zhaowei, et al. Dual-wavelength, passively Q-switched Tm: YAP laser with black phosphorus saturable absorber[J]. Optical Materials Express, 2016, 6(7): 2328-2335. doi: 10.1364/OME.6.002328
|
[17] |
Zhang Huanian, Liu Jie. Gold nanobipyramids as saturable absorbers for passively Q-switched laser generation in the 1.1 μm region[J]. Optics Letters, 2016, 41(6): 1150-1152. doi: 10.1364/OL.41.001150
|
[18] |
Bai Jinxi, Li Ping, Chen Xiaohan, et al. Diode-pumped passively Q-switched Nd:YAG ceramic laser with a gold nanotriangles saturable absorber at 1 µm[J]. Applied Physics Express, 2017, 10: 082701. doi: 10.7567/APEX.10.082701
|
[19] |
Scarabelli L, Coronado M, Giner J J, et al. Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering[J]. ACS Nano, 2014, 8(6): 5833-5842. doi: 10.1021/nn500727w
|
[20] |
Chen J Y, Wiley B, Li Z Y, et al. Gold nanocages: Engineering their structure for biomedical applications[J]. Advanced Materials, 2005, 17(18): 2255-2261. doi: 10.1002/adma.200500833
|
[21] |
Skrabalak S E, Chen Jingyi, Au L, et al. Gold nanocages for biomedical applications[J]. Advanced Materials, 2007, 19(20): 3177-3184. doi: 10.1002/adma.200701972
|
[22] |
Wang H, Brandl D W, Nordlander P, et al. Plasmonic nanostructures: Artificial molecules[J]. Accounts of Chemical Research, 2007, 40(1): 53-62. doi: 10.1021/ar0401045
|
[23] |
Wang Lili, Chen Xiaohan, Bau Jinxi, et al. Au nanocages/SiO2 as saturable absorbers for passively Q-switched all-solid-state laser[J]. Materials Research Express, 2018, 5: 045043. doi: 10.1088/2053-1591/aabe11
|
[24] |
Skrabalak S E, Chen Jingyi, Sun Yugang, et al. Gold nanocages: Synthesis, properties, and applications[J]. Accounts of Chemical Research, 2008, 41(12): 1587-1595. doi: 10.1021/ar800018v
|
[25] |
Sheik B M, Said A A, Stryland E W V. High-sensitivity, single-beam n2 measurements[J]. Optics Letters, 1989, 14(17): 955-957. doi: 10.1364/OL.14.000955
|