Citation: | Sun Ao, Shang Wanli, Yang Guohong, et al. Study on X-ray line emission diffraction in inertial confinement fusion and its recent progress[J]. High Power Laser and Particle Beams, 2020, 32: 112008. doi: 10.11884/HPLPB202032.200129 |
[1] |
温树槐, 丁永坤. 激光惯性约束聚变诊断学[M]. 北京: 国防工业出版社, 2012: 200-205.
Wen Shuhuai, Ding Yongkun. Laser inertial confinement fusion diagnostics[M]. Beijing: National Defense Industry Press, 2012: 200-205
|
[2] |
Basov N G, Danilychev V A, Glotov E P. Theoretical investigation of promising methods of improving the energy characteristics of CW industrial electron-beam-controlled lasers[J]. Journal of Soviet Laser Research, 1984, 5: 647-666.
|
[3] |
Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
|
[4] |
Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
|
[5] |
Champeney D C, Fuoss R M. Fourier transforms and their physical applications[J]. Physics Today, 1973, 26(10): 57. doi: 10.1063/1.3128283
|
[6] |
James R W. The dynamical theory of X-ray diffraction[J]. Solid State Physics, 1963, 15: 53-220. doi: 10.1016/S0081-1947(08)60592-5
|
[7] |
Wittry D B, Barbi N C. X-ray crystal spectrometers and monochromators in microanalysis[J]. Microscopy and Microanalysis, 2001, 7(2): 124-141. doi: 10.1007/S100050010080
|
[8] |
Nielsen J A, McMorrow D. Elements of modern X-ray physics[M]. London: John Wiley & Sons, 2011: 207-230.
|
[9] |
Sanchez del Rio M, Bernstorff S, Savoia A, et al. A conceptual model for ray tracing calculations with mosaic crystals[J]. Review of Scientific Instrument, 1992, 63: 932-935. doi: 10.1063/1.1143784
|
[10] |
Gambaccini M, Taibi A, Del Guerra A, et al. Small-field imaging properties of narrow energy band X-ray beams for mammography[C]// IEEE Nuclear Science Symposium and Medical Imaging Conference Record. 1995, 3: 1388-1391.
|
[11] |
Sanchez del Rio M, Ferrero C, Mocella V. Computer simulation of bent perfect crystal diffraction profiles[C]//Proc of SPIE. 1997, 3151: 312-323.
|
[12] |
Honkanen A P, Ferrero C, Guigayb J P, et al. A finite-element approach to dynamical diffraction problems in reflection geometry[J]. Journal of Applied Crystallography, 2018, 51: 514-525. doi: 10.1107/S1600576718001930
|
[13] |
Freund A K. Mosaic crystals monochromators for synchrotron radiation instrumentation[J]. Nucl Instr and Met, 1988, A266: 461-466.
|
[14] |
Koppel L N. Active-recording X-ray crystal spectrometer for laser-induced plasmas[J]. Review of Scientific Instrument, 1976, 47: 1109-1112. doi: 10.1063/1.1134826
|
[15] |
Barnsley R, Peacock N J, Dunn J, et al. Versatile high resolution crystal spectrometer with X-ray charge coupled device detector[J]. Review of Scientific Instrument, 2003, 74: 2388-2397. doi: 10.1063/1.1533105
|
[16] |
Johansson T. A novel precise focusing X-ray Spectrometer[J]. Journal of Physics, 1993, 82(7/8): 507-528.
|
[17] |
Yaakobi B, Turner R E, Schnopper H W, et al. Focusing X-ray spectrograph for laser fusion experiments[J]. Review of Scientific Instrument, 1979, 50: 1609-1611. doi: 10.1063/1.1135776
|
[18] |
Hall T A. A focusing X-ray crystal spectrograph[J]. Journal of Physics E Scientific Instruments, 2000, 17(2): 110.
|
[19] |
Morishita K, Hayashi K, Nakajima K. One-shot spectrometer for several elements using an integrated conical crystal analyzer[J]. Review of Scientific Instrument, 2012, 83: 013112. doi: 10.1063/1.3677326
|
[20] |
Bitter M, Hill K W, Gao L, et al. A multi-cone X-ray imaging Bragg crystal spectrometer[J]. Review of Scientific Instrument, 2016, 87: 11E333. doi: 10.1063/1.4960537
|
[21] |
Del Río M S, Dejus R J. XOP v2. 4: Recent developments of the X-ray optics software toolkit[C]//Proc of SPIE. 2011: 814115.
|