Citation: | Li Zhichao, Zhao Hang, Gong Tao, et al. Recent research progress of optical Thomson scattering in laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 092004. doi: 10.11884/HPLPB202032.200130 |
[1] |
李三伟, 杨冬, 李欣, 等. 我国激光间接驱动黑腔物理实验研究进展[J]. 中国科学: 物理学 力学 天文学, 2018, 48:065202. (Li Sanwei, Yang Dong, Li Xin, et al. Recent progress of hohlraum physics experiments in indirect driven ICF in China[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48: 065202
|
[2] |
Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
|
[3] |
Lindl J, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
|
[4] |
Glenzer S H, Back C A, Suter L J, et al. Thomson scattering from inertial confinement fusion hohlraum plasmas[J]. Physical Review Letters, 1997, 79(7): 1277-1280. doi: 10.1103/PhysRevLett.79.1277
|
[5] |
Glenzer S, MacGowan B, Michel P, et al. Symmetric Inertial Confinement Fusion implosions at ultra-high laser energies[J]. Science, 2010, 327(5970): 1228-1231. doi: 10.1126/science.1185634
|
[6] |
National Nuclear Sccurity Administration. National Ignition campaign program completion report[R]. LLNL-TR-570412, 2021.
|
[7] |
Lindl J, Landen O, Edward J, et al. Review of the National Ignition Campaign 2009-2012[J]. Physics of Plasmas, 2014, 21: 020501.
|
[8] |
Guo Liang, Li Xin, Xie Xufei, et al. Experimental and simulation studies on gold bubble movement in gas-filled hohlraums[J]. Nuclear Fusion, 2019, 59: 016002.
|
[9] |
杨冬, 李志超, 李三伟, 等. 间接驱动惯性约束聚变中的激光等离子体不稳定性[J]. 中国科学: 物理学 力学 天文学, 2018, 48:065203. (Yang Dong, Li Zhichao, Li Sanwei, et al. Laser plasma instability in indirect-drive inertial confinement fusion[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48: 065203
|
[10] |
Froula D, Glenzer S, Luhmann N, et al. Plasma scattering of electromagnetic radiation: Theory and measurement techniques[J]. Fusion Science and Technology, 2012,61(1):104-105.
|
[11] |
Bai Bo, Zheng Jian, Liu Wandong, et al. Thomson scattering measurement of gold plasmas produced with 0.351 μm laser light[J]. Physics of Plasmas, 2001, 8(9): 4144-4148. doi: 10.1063/1.1391445
|
[12] |
Bai Bo, Zheng Jian, Yu Changxuan, et al. Collective Thomson scattering from laser-produced plasmas[J]. Chinese Physics Letters, 2001, 18(7): 936-939.
|
[13] |
王哲斌. 激光聚变等离子体Thomson散射诊断[D]. 合肥: 中国科学技术大学, 2006: 121-286.
Wang Zhebin. Thomson scattering of laser plasmas in relevance to inertial confinement fusion[D]. Hefei: University of Science and Technology of China, 2006: 121-286
|
[14] |
Wang Zhebin, Zheng Jian, Zhao Bin, et al. Thomson scattering from laser-produced gold plasmas in radiation conversion layer[J]. Physics of Plasmas, 2005, 12: 082703.
|
[15] |
李志超. 大尺度激光等离子体相互作用的实验研究[D]. 合肥: 中国科学技术大学, 2011: 11-199.
Li Zhichao. Experimental research on large-scale laser-plasma interactions[D]. Hefei: University of Science and Technology of China, 2011: 11-199
|
[16] |
Li Zhichao, Zheng Jian, Jiang Xiaohua, et al. Methods of generation and detailed characterization of millimeter-scale plasmas using a gasbag target[J]. Chinese Physics Letters, 2011, 28: 125202.
|
[17] |
Li Zhichao, Zheng Jian, Jiang Xiaohua, et al. Interaction of 0.53 μm laser pulse with millimeter-scale plasmas generated by gasbag target[J]. Physics of Plasmas, 2012, 19: 062703.
|
[18] |
Gong Tao, Li Zhichao, Jiang Xiaohua, et al. Development of Thomson scattering system on Shenguang-III prototype laser facility[J]. Review of Scientific Instruments, 2015, 86: 023501.
|
[19] |
龚韬. 激光间接驱动惯性约束聚变中受激散射过程的理论和实验研究[D]. 合肥: 中国科学技术大学, 2015.
Gong Tao. Theoretical and experimental study on the stimulated scattering in laser indirect-drive inertial confinement fusion [D]. Hefei: University of Science and Technology of China, 2015
|
[20] |
Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. laser performance upgrade for precise ICF experiment in SG-III laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5): 243-250. doi: 10.1016/j.mre.2017.07.004
|
[21] |
Zhao Hang, Li Zhichao, Yang Dong, et al. Implementation of ultraviolet Thomson scattering on SG-III laser facility[J]. Review of Scientific Instruments, 2018, 89: 093505.
|
[22] |
Zhao Hang, Li Zhichao, Yang Dong, et al. Progress in optical Thomson scattering diagnostics for ICF gas-filled hohlraums[J]. Matter and Radiation at Extremes, 2019, 4: 055201. doi: 10.1063/1.5090971
|
[23] |
Froula D H, Ross J S, Divol L, et al. Thomson scattering measurements of high electron temperature hohlraum plasmas for laser-plasma interaction studies[J]. Physics of Plasmas, 2006, 13: 052704.
|
[24] |
Song Tianming, Yang Jiamin, Yang Dong, et al. Experimental study of the X-ray radiation source at approximately constant radiation temperature[J]. Plasma Science and Technology, 2013, 15(11): 1108-1111. doi: 10.1088/1009-0630/15/11/06
|
[25] |
Song Tianming, Yang Jiamin, Zhu Tuo, et al. Continued study of hohlraum radiation source at approximately constant radiation temperature[J]. Plasma Science and Technology, 2016, 18(4): 342-345. doi: 10.1088/1009-0630/18/4/02
|
[26] |
Li Zhichao, Jiang Xiaohua, Liu Shenye, et al. A novel flat-response X-ray detector in the photon energy range of 0.1–4 keV[J]. Review of Scientific Instruments, 2010, 81: 073504.
|
[27] |
Li Zhichao, Zhu Xiaoli, Jiang Xiaohua, et al. Note: Continuing improvements on the novel flat-response X-ray detector[J]. Review of Scientific Instruments, 2011, 82: 106106.
|
[28] |
宋鹏, 翟传磊, 李双贵, 等. 激光间接驱动惯性约束聚变二维总体程序—LARED集成程序[J]. 强激光与粒子束, 2015, 27:032007. (Song Peng, Zhai Chuanlei, Li Shuanggui, et al. LARED–Integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2015, 27: 032007 doi: 10.11884/HPLPB201527.032007
|
[29] |
Shan Lianqiang, Cai Hongbo, Zhang Huasen, et al. Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2018, 120: 195001.
|
[30] |
Jiang Shaoen, Wang Feng, Ding Yongkun, et al. Experimental progress of inertial confinement fusion based at the ShenGuang-III laser facility in China[J]. Nuclear Fusion, 2019, 59: 032006.
|
[31] |
Huo Wenyi, Li Zhichao, Chen Yaohua, et al. First octahedral spherical hohlraum energetics experiment at the SGIII laser facility[J]. Physical Review Letters, 2018, 120: 165001.
|
[32] |
Liu Yaoyuan, Ding Yongkun, Zheng Jian. Improvement in Thomson scattering diagnostic precision via fitting the multiple-wavenumber spectra simultaneously[J]. Review of Scientific Instruments, 2019, 90: 083501.
|
[33] |
Ross J S. UV Thomson scattering on the NIF[C]//National ICF Diagnostic Working Group Meeting. 2015.
|
[34] |
Gong Tao, Hao Liang, Li Zhichao, et al. Recent research progress of laser plasma interactions in Shenguang laser facilities[J]. Matter and Radiation at Extremes, 2019, 4: 055202. doi: 10.1063/1.5092446
|
[35] |
Kline J L, Montgomery D S, Bezzerides B, et al. Observation of a transition from fluid to kinetic nonlinearities for Langmuir waves driven by stimulated Raman backscatter[J]. Physical Review Letters, 2005, 94: 175003.
|
[36] |
Rousseaux C, Gremillet L, Casanova M, et al. Transient development of backward stimulated Raman and Brillouin scattering on a picosecond time scale measured by subpicosecond Thomson diagnostic[J]. Physical Review Letters, 2006, 97: 015001.
|
[37] |
Turnbull D, Michel P, Ralph J E, et al. Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments[J]. Physical Review Letters, 2015, 114: 125001.
|
[38] |
Michel P, Divol L, Dewald E L, et al. Multibeam stimulated Raman scattering in inertial confinement fusion conditions[J]. Physical Review Letters, 2015, 115: 055003.
|
[39] |
Neuville C, Tassin V, Pesme D, et al. Experimental evidence of the collective Brillouin scattering of multiple laser beams sharing acoustic waves[J]. Physical Review Letters, 2016, 116: 235002. doi: 10.1103/PhysRevLett.116.235002
|