Volume 32 Issue 11
Sep.  2020
Turn off MathJax
Article Contents
Xu Jie, Mu Baozhong, Chen Liang, et al. Progress of grazing incidence X-ray micro-imaging diagnosis technology[J]. High Power Laser and Particle Beams, 2020, 32: 112001. doi: 10.11884/HPLPB202032.200133
Citation: Xu Jie, Mu Baozhong, Chen Liang, et al. Progress of grazing incidence X-ray micro-imaging diagnosis technology[J]. High Power Laser and Particle Beams, 2020, 32: 112001. doi: 10.11884/HPLPB202032.200133

Progress of grazing incidence X-ray micro-imaging diagnosis technology

doi: 10.11884/HPLPB202032.200133
  • Received Date: 2020-05-19
  • Rev Recd Date: 2020-07-01
  • Publish Date: 2020-09-13
  • High-precision X-ray imaging diagnosis is the key to understanding the implosion process and revealing unknown physical problems at the ignition scale. X-ray microscope based on grazing incidence reflection, combined with sub-nanometer ultra-smooth spherical or aspherical mirror, can achieve high-resolution imaging with spatial resolution better than 5 μm. This paper introduces the development and application of foreign X-ray microscopic imaging technology in the field of ICF research, highlights the progress of China’s high-resolution X-ray Kirkpatrick-Baez (KB) microscope, multi-channel X-ray KB microscope and large-field X-ray KBA microscope. The research plan for the next stage of ultra-high resolution X-ray microscopic imaging is analyzed. Through continuous technological innovation, China's X-ray microscopic imaging diagnostic capabilities have reached the internationally advanced level.
  • loading
  • [1]
    Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12: 435-448. doi: 10.1038/nphys3736
    [2]
    Hurricane O A, Callahan D A, Casey D T, et al. Fuel gain exceeding unity in an inertially confined fusion implosion[J]. Nature, 2014, 506(7488): 343-348. doi: 10.1038/nature13008
    [3]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [4]
    Pu Y, Huang T, Ge F, et al. First integrated implosion experiments on the SG-III laser facility[J]. Plasma Physics and Controlled Fusion, 2018, 60: 101864.
    [5]
    Yan J, Zhang X, Li J, et al. Preliminary experiments of the hohlraum-driven double-shell implosion on Shenguang-III laser facility[J]. Nuclear Fusion, 2018, 58: 076020.
    [6]
    Jiang Shaoen, Wang Feng, Ding Yongkun, et al. Experimental progress of inertial confinement fusion based at the Shenguang-III laser facility in China[J]. Nuclear Fusion, 2019, 59: 032006.
    [7]
    Hurricane O A, Callahan D, Casey D, et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nature Physics, 2016, 12: 800-806. doi: 10.1038/nphys3720
    [8]
    Smalyuk V A, Robey H F, Alday C L, et al. Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 102707. doi: 10.1063/1.4995568
    [9]
    Haines B M, Olon R E, Sweet W, et al. Robustness to hydrodynamic instabilities in indirectly driven layered capsule implosions[J]. Physics of Plasmas, 2019, 26: 012707. doi: 10.1063/1.5080262
    [10]
    Clark D S, Weber C R, Milovich J L, et al. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility[J]. Physics of Plasmas, 2016, 23: 041006.
    [11]
    董建军, 邓克立, 王强强, 等. 基于多通道Kirkpatrick-Baez显微镜的内爆热斑不对称性实验研究[J]. 核聚变与等离子体物理, 2018, 38:125-129. (Dong Jianjun, Deng Keli, Wang Qiangqiang, et al. Experimental study on the asymmetry of implosion hot spot based on multi-channel Kirkpatrick-Baez microscope[J]. Nuclear Fusion and Plasma Physics, 2018, 38: 125-129
    [12]
    黎航, 蒲昱东, 景龙飞, 等. 间接驱动的内爆不对称性随腔长和时间变化的研究[J]. 物理学报, 2013(22):317-322. (Li Hang, Pu Yudong, Jing Longfei, et al. Variations of implosion asymmetry with hohlraum length and time in indirect-drive inertial confinement fusion[J]. Acta Physica Sinica, 2013(22): 317-322
    [13]
    Pu Y, Huang T, Wei M, et al. Spectroscopic studies of shell mix in directly driven implosion on SG-III prototype laser facility[J]. Physics of Plasmas, 2014, 21: 122707. doi: 10.1063/1.4904041
    [14]
    He S, Ding Y, Miao W, et al. Diagnostic for determining the mix in inertial confinement fusion capsule hotspot[J]. Physics of Plasmas, 2016, 23: 072708. doi: 10.1063/1.4959114
    [15]
    Wu J F, Miao W Y, Wang L F, et al. Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang-II laser facility[J]. Physics of Plasmas, 2014, 21: 042707.
    [16]
    Xie Qing, Mu Baozhong, Li Yaran, et al. Development of high resolution dual-energy KBA microscope with large field of view for RT-instability diagnostics at SG-III facility[J]. Optics Express, 2017, 25(3): 2608-2617. doi: 10.1364/OE.25.002608
    [17]
    温树槐, 丁永坤. 激光惯性约束聚变诊断学[M]. 北京: 国防工业出版社, 2012.

    Wen Shuhuai, Ding Yongkun. Laser inertial confinement fusion diagnostics. Beijing: National Defense Industry Press, 2012
    [18]
    Wen S, Cheng J, Yang C, et al. Application of an X-ray framing camera in ICF diagnostic[C]//Proc of SPIE. 2001, 4424: 188.
    [19]
    曹磊峰, 郑志坚, 丁永坤, 等. X光环孔编码成像技术研究[J]. 强激光与粒子束, 2003, 15(8):764-768. (Cao Leifeng, Zheng Zhijian, Ding Yongkun, et al. Investigation of X-ray ring aperture coded imaging technique[J]. High Power Laser and Particle Beams, 2003, 15(8): 764-768
    [20]
    Kirkpatrick P, Baez A V. Formation oflcal images by X-rays[J]. Journal of the Optical Society of America, 1948, 38(9): 766. doi: 10.1364/JOSA.38.000766
    [21]
    Wolter V H. Spiegelsysteme streifenden Einfalls als abbildende Optiken fur Rontgenstrahlen[J]. Annalen der Physik, 1952, 6(10): 94-114.
    [22]
    Aoki S, Sakayanagi Y. X-ray imaging with toroidal mirror[J]. Applied Optics, 1978, 17(4): 601-603. doi: 10.1364/AO.17.000601
    [23]
    Stoeckl C, Bedzyk M, Brent G, et al. Soft X-ray backlighting of cryogenic implosions using a narrowband crystal imaging system[J]. Review of Scientific Instruments, 2014, 85: 11E501.
    [24]
    Koch J A, Lee J J, Haugh M J. High miller-index germanium crystals for high-energy X-ray imaging applications[J]. Applied Optics, 2015, 54(34): 10227-10231. doi: 10.1364/AO.54.010227
    [25]
    陈伯伦, 韦敏习, 杨正华, 等. 球面弯晶的背光成像特性[J]. 强激光与粒子束, 2013, 25(3):641-645. (Chen Bolun, Wei Minxi, Yang Zhenghua, et al. Character of backlight imaging based on spherically bent crystal[J]. High Power Laser and Particle Beams, 2013, 25(3): 641-645 doi: 10.3788/HPLPB20132503.0641
    [26]
    Rosch R, Trosseille C, Caillaud T, et al. First set of gated X-ray imaging diagnostics for the Laser Megajoule facility[J]. Review of Scientific Instruments, 2016, 87: 033706.
    [27]
    Ceglio N M, Attwood D T, George E V. Zone-plate coded imaging of laser-produced plasmas[J]. Journal of Applied Physics, 1977, 48(4): 1566-1569. doi: 10.1063/1.323834
    [28]
    Do A, Troussel P, Baton S D, et al. High-resolution quasi-monochromatic X-ray imaging using a Fresnel phase zone plate and a multilayer mirror[J]. Review of Scientific Instruments, 2017, 88: 013701. doi: 10.1063/1.4973296
    [29]
    Christensen F E. X-ray multilayers in diffractometers, monochromators, and spectrometers[M]. Bellingham: SPIE press, 1988.
    [30]
    Marshall F J, Allen M M, Knauer J P, et al. A high-resolution X-ray microscope for laser-driven planar-foil experiments[J]. Physics of Plasmas, 1998, 5(4): 1118-1124. doi: 10.1063/1.872642
    [31]
    Marshall F J, Oertel J A. A framed monochromatic X-ray microscope for ICF[J]. Review of Scientific Instruments, 1997, 68(1): 735-739. doi: 10.1063/1.1147688
    [32]
    Pardini T, McCarville T J, Walton C C, et al. Optical and multilayer design for the first Kirkpatrick-Baez optics for X-ray diagnostic at NIF[C]//Target Diagnostics Physics and Engineering for Inertial Confinement Fusion II. 2013: 8850.
    [33]
    Pickworth L A, McCarville T, Decker T, et al. A Kirkpatrick-Baez microscope for the National Ignition Facility[J]. Review of Scientific Instruments, 2014, 85: 11D611. doi: 10.1063/1.4886433
    [34]
    Pickworth L A, Bradley D, Pardini T, et al. A Kirkpatrick-Baez microscope for core implosion imaging at NIF[C]//APS Meeting Abstracts. 2013.
    [35]
    Pickworth L A, Ayers J, Bell P, et al. The National Ignition Facility modular Kirkpatrick-Baez microscope[J]. Review of Scientific Instruments, 2016, 87: 11E316. doi: 10.1063/1.4960417
    [36]
    Marshall F J, Oertel J A, Walsh P J. Framed, 16-image, Kirkpatrick-Baez microscope for laser–plasma X-ray emission[J]. Review of Scientific Instruments, 2004, 75(10): 4045-4047. doi: 10.1063/1.1789258
    [37]
    Marshall F J. Compact Kirkpatrick–Baez microscope mirrors for imaging laser-plasma X-ray emission[J]. Review of Scientific Instruments, 2012, 83: 10E578.
    [38]
    Marshall F J, Bahr R E, Goncharov V N, et al. A framed, 16-image Kirkpatrick-Baez X-ray microscope[J]. Review of Scientific Instruments, 2017, 88: 093702. doi: 10.1063/1.5000737
    [39]
    Ramsey B D. Replicated nickel optics for the hard-X-ray region[J]. Experimental Astronomy, 2005, 20(1/3): 85-92.
    [40]
    Liu D, Khaykovich B, Gubarev M V, et al. Demonstration of a novel focusing small-angle neutron scattering instrument equipped with axisymmetric mirrors[J]. Nature Communications, 2013, 4: 2556. doi: 10.1038/ncomms3556
    [41]
    Bourdon C J, Vogel J, Wu M. Wolter imaging on Z[R]. (SNL-NM), Albuquerque: Sandia National Laboratories, 2015.
    [42]
    Vogel J. National ICF Diagnostics Working Group meeting[R]. NDWG, 2015.
    [43]
    穆宝忠, 伊圣振, 黄圣铃, 等. ICF用Kirkpatrick Baez型显微镜光学设计[J]. 强激光与粒子束, 2008, 20(3):409-412. (Mu Baozhong, Yi Shengzhen, Huang Shengling, et al. Optical design of Kirkpatrick-Baez microscope for ICF[J]. High Power Laser and Particle Beams, 2008, 20(3): 409-412
    [44]
    Bennett G R. Advanced one-dimensional X-ray microscope for the OMEGA laser facility[J]. Review of Scientific Instruments, 1999, 70(1): 608-612. doi: 10.1063/1.1149433
    [45]
    Le Breton J P, Alozy E, Boutin J Y, et al. Laser integration line target diagnostics first result[J]. Review of Scientific Instruments, 2006, 77: 10F530. doi: 10.1063/1.2349746
    [46]
    Li Y, Dong J, Xie Q, et al. Development of a polar-view Kirkpatrick-Baez X-ray microscope for implosion asymmetry studies[J]. Optics Express, 2019, 27(6): 8348. doi: 10.1364/OE.27.008348
    [47]
    Yi S, Mu B, Wang X, et al. A four-channel multilayer KB microscope for high-resolution 8-keV X-ray imaging in laser-plasma diagnostics[J]. Chinese Optics Letters, 2014, 12: 013401.
    [48]
    Li Y, Xie Q, Chen Z, et al. Direct intensity calibration of X-ray grazing-incidence microscopes with home-lab source[J]. Review of Scientific Instruments, 2018, 89: 013704. doi: 10.1063/1.5003959
    [49]
    穆宝忠, 吴雯靓, 伊圣振, 等. 4.75 keV能点四通道Kirkpatrick-Baez显微镜[J]. 强激光与粒子束, 2013, 25(4):903-907. (Mu Baozhong, Wu Wenliang, Yi Shengzhen, et al. 4.75 keV four-channel Kirkpatrick-Baez microscope[J]. High Power Laser and Particle Beams, 2013, 25(4): 903-907 doi: 10.3788/HPLPB20132504.0903
    [50]
    Li Yaran, Mu Baozhong, Xie Qing, et al. Development of an X-ray eight-image Kirkpatrick–Baez diagnostic system for China’s laser fusion facility[J]. Applied Optics, 2017, 56(12): 3311. doi: 10.1364/AO.56.003311
    [51]
    伊圣振, 穆宝忠, 王新, 等. 用于平面靶 X射线诊断的1维KBA显微镜[J]. 强激光与粒子束, 2012, 24(5):1076-1080. (Yi Shengzhen, Mu Baozhong, Wang Xin, et al. One-dimensional KBA microscope for planar target diagnosis[J]. High Power Laser and Particle Beams, 2012, 24(5): 1076-1080 doi: 10.3788/HPLPB20122405.1076
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(1)

    Article views (2327) PDF downloads(159) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return