Cai Hongbo, Zhang Wenshuai, Du Bao, et al. Characteristic and impact of kinetic effects at interfaces of inertial confinement fusion hohlraums[J]. High Power Laser and Particle Beams, 2020, 32: 092007. doi: 10.11884/HPLPB202032.200134
Citation: Cai Hongbo, Zhang Wenshuai, Du Bao, et al. Characteristic and impact of kinetic effects at interfaces of inertial confinement fusion hohlraums[J]. High Power Laser and Particle Beams, 2020, 32: 092007. doi: 10.11884/HPLPB202032.200134

Characteristic and impact of kinetic effects at interfaces of inertial confinement fusion hohlraums

doi: 10.11884/HPLPB202032.200134
  • Received Date: 2020-05-18
  • Rev Recd Date: 2020-07-20
  • Publish Date: 2020-08-15
  • In the study of inertial confinement fusion physics, the characteristics, temporal and spatial evolution of kinetic effects at the plasma interfaces attract crucial interest recently because they can affect the laser energy deposition, laser plasma instabilities, radiation asymmetry and implosion performance. A successful design of inertial confinement fusion requires the accurate description of the temporal and spatial evolution of the kinetic effects at the plasma interfaces, which is also a very challenging and unresolved problem in high energy density physics. In this paper, we will review our recent researches on the kinetic effects and their influence on laser plasma instabilities and implosion performance: (1) Electrostatic field arisen in the hohlraum wall/ablator (or the low-density fill-gas) interpenetration region will result in efficient acceleration of high energy ions, which is a source of the low-mode asymmetry of the implosion capsule. (2) The mechanism for the electrostatic field generation and the anomalous mix in the interpenetration layer at the high-Z and low-Z plasma interface and its effects on the laser plasma instabilities. (3) Reconstruction of the spontaneous electric and magnetic fields through proton radiography.
  • [1]
    Edwards M J, Patel P K, Lindl J D, et al. Progress towards ignition on the National Ignition Facility[J]. Physics of Plasmas, 2013, 20: 070501. doi: 10.1063/1.4816115
    [2]
    Hurricane O A, Callahan D A, Springer P T, et al. Beyond alpha-heating: driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility[J]. Plasma Physics Controlled Fusion, 2019, 61: 014033.
    [3]
    Kritcher A L, Hinkel D E, Callahan D A, et al. Integrated modeling of cryogenic layered highfoot experiments at the NIF[J]. Physics of Plasmas, 2016, 23(5): 052709. doi: 10.1063/1.4949351
    [4]
    Hopkins L F Berzak, Pape S Le, Divol L, et al. Near-vacuum hohlraums for driving fusion implosions with high density carbon ablators[J]. Physics of Plasmas, 2015, 22: 056318. doi: 10.1063/1.4921151
    [5]
    Rinderknecht H G, Amendt P A, Wilks S C, et al. Kinetic physics in ICF: present understanding and future directions[J]. Plasma Physics Controlled Fusion, 2018, 60: 064001.
    [6]
    Ross J S, Park H S, Amendt P, et al. Thomson scattering diagnostic for the measurement of ion species fraction[J]. Review of Scientific Instruments, 2012, 83: 10E323. doi: 10.1063/1.4731007
    [7]
    Bellei C, Amendt P A, Wilks S C, et al. Species separation in inertial confinement fusion fuels[J]. Physics of Plasmas, 2013, 20: 012701. doi: 10.1063/1.4773291
    [8]
    Kirkwood R K, Moody J D, Kline J, et al. A review of laser–plasma interaction physics of indirect-drive fusion[J]. Plasma Physics Controlled Fusion, 2013, 55: 103001.
    [9]
    Shan L Q, Cai H B, Zhang W S, et al. Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2018, 120: 195001. doi: 10.1103/PhysRevLett.120.195001
    [10]
    Cai H B, Shan L Q, Yuan Z Q, et al. Study of the kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. High Energy Density Physics, 2020, 36: 100756. doi: 10.1016/j.hedp.2020.100756
    [11]
    Li C K, Seguin F H, Frenje J A, et al. Diagnosing indirect-drive inertial-confinement-fusion implosions with charged particles[J]. Plasma Physics and Controlled Fusion, 2010, 52: 124027.
    [12]
    Turnbull D, Colaitis A, Hansen A M, et al. , Impact of the Langdon effect on crossed-beam energy transfer[J]. Nature Physics, 2019, 16: 181-185.
    [13]
    蔡洪波, 周沧涛, 贾青, 等. 激光驱动强流电子束产生和控制[J]. 强激光与粒子束, 2015, 27:032001. (Cai Hongbo, Zhou Cangtao, Jia Qing, et al. Laser-driven relativistic electron beam for fast ignition[J]. High Power Laser and Particle Beams, 2015, 27: 032001 doi: 10.11884/HPLPB201527.032001
    [14]
    Thoma C, Welch D R, Clark R E, et al. Hybrid-PIC modeling of laser-plasma interactions and hot electron generation in gold hohlraum walls[J]. Physics of Plasmas, 2017, 24: 062707. doi: 10.1063/1.4985314
    [15]
    Molvig K, Vold E L, Dodd E S, et al. Nonlinear structure of the diffusing gas-metal interface in a thermonuclear plasma[J]. Physical Review Letters, 2012, 109: 095001.
    [16]
    Braginskii S I. Transport process in a plasma[J]. Reviews of Plasma Physics, 1965, 1: 205-311.
    [17]
    Li C K, Petrasso R D. Charaged-particle stopping powers in inertial confinement fusion plasmas[J]. Physical Review Letters, 1993, 70(20): 3059-3063. doi: 10.1103/PhysRevLett.70.3059
    [18]
    Zhang W S, Cai H B, Shan L Q, et al. Anomalous neutron yield in indirect-drive inertial-confinement-fusion due to the formation of collisionless shocks in the corona[J]. Nuclear Fusion, 2017, 57(17): 066012.
    [19]
    Kirkwood R K, Moody J D, Kline J, et al. A review of laser–plasma interaction physics of indirect-drive fusion[J]. Plasma Physics and Controlled Fusion, 2013, 55: 103001.
    [20]
    Kirkwood R K, Michel P, London R. et al. Multi-beam effects on backscatter and its saturation in experiments with conditions relevant to ignition[J]. Physics of Plasmas, 2011, 18: 056311. doi: 10.1063/1.3587122
    [21]
    Turnbull D, Michel P, Ralph J E, et al. Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments[J]. Physical Review Letters, 2015, 114(12): 125001. doi: 10.1103/PhysRevLett.114.125001
    [22]
    Myatt J F, Zhang J, Short R W, et al. Multiple-beam laser–plasma interactions in inertial confinement fusion[J]. Physics of Plasmas, 2014, 21: 055501. doi: 10.1063/1.4878623
    [23]
    Dewald E L, Hartemann F, Michel P, et al. Generation and beaming of early hot electrons onto the capsule in laser-driven ignition hohlraums[J]. Physics Review Letters, 2016, 116: 075003. doi: 10.1103/PhysRevLett.116.075003
    [24]
    Kruer W L, Wilks S C, Afeyan B B, et al. Energy transfer between crossing laser beams[J]. Physics of Plasmas, 1996, 3(1): 382-385. doi: 10.1063/1.871863
    [25]
    Hall G N, Jones O S, Strozzi D J, et al. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 052706. doi: 10.1063/1.4983142
    [26]
    杨冬, 李志超, 李三伟, 等. 间接驱动惯性约束聚变中的激光等离子体不稳定性[J]. 中国科学: 物理学 力学 天文学, 2018, 48:065203. (Yang Dong, Li Zhichao, Li Sanwei, et al. Laser plasma instability in indirect-drive inertial confinement fusion[J]. Scientia Sinica-Physica Mechanica&Astronamica, 2018, 48: 065203 doi: 10.1360/SSPMA2018-00056
    [27]
    Gong T, Hao L, Li Z, et al. Recent research progress of laser plasma interactions in Shenguang laser facilities[J]. Matter and Radiation at Extremes, 2019, 4: 055202. doi: 10.1063/1.5092446
    [28]
    Hao L, Yang D, Li X, et al. Investigation on laser plasma instability of the outer ring beams on SGIII laser facility[J]. AIP Advances, 2019, 9: 095201. doi: 10.1063/1.5087936
    [29]
    Yan X X, Cai H B, Zhang W S, et al. Anomalous mix induced by a collisionless shock wave in an inertial confinement fusion hohlraum[J]. Nuclear Fusion, 2019, 59: 106016.
    [30]
    Froula D H, Ross J S, Pollock B B, et al. Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering[J]. Physical Review Letters, 2007, 98: 135001. doi: 10.1103/PhysRevLett.98.135001
    [31]
    张恩浩, 蔡洪波, 杜报, 等. 激光聚变黑腔中等离子体的热流研究[J]. 物理学报, 2020, 69:035204. (Zhang Enhao, Cai Hongbo, Du Bao, et al. Heat flow of laser-ablated gold plasma in inertial confinement fusion hohlraum[J]. Acta Phys Sin, 2020, 69: 035204 doi: 10.7498/aps.69.20191423
    [32]
    Fiuza F, Fonseca R A, Tonge J, et al. Weibel-instability-mediated collisionless shocks in the laboratory with ultraintense lasers[J]. Physical Review Letters, 2012, 108: 235004. doi: 10.1103/PhysRevLett.108.235004
    [33]
    Manuel M J E, Li C K, Séguin F H, et al. First measurements of Rayleigh-Taylor-induced magnetic fields in laser-produced plasmas [J]. Physical Review Letters, 108 : 255006.
    [34]
    项志遴, 俞昌旋. 高温等离子体诊断技术 [M]. 上海:上海科学技术出版社, 1982.

    Xiang Zhilin, Yu Changxuan. High temperature plasma diagnotics [M]. Shanghai: Shanghai Scientific&Technical Publishing, 1982
    [35]
    Kaluza M C, Schlenvoigt H P, Mangles S, et al. Measurement of magnetic-field structures in a laser-wakefield accelerator[J]. Physical Review Letters, 2010, 105: 115002. doi: 10.1103/PhysRevLett.105.115002
    [36]
    Li C K, Séguin F H, Rygg J R, et al. Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography[J]. Physical Review Letters, 2006, 97: 135003. doi: 10.1103/PhysRevLett.97.135003
    [37]
    Rygg J R, Séguin F H, Li C K, et al. Proton radiography of inertial fusion implosions[J]. Science, 2008, 319: 1223-1225. doi: 10.1126/science.1152640
    [38]
    Wang W W, Cai H B, Teng J, et al. Efficient production of strong magnetic fields from ultraintense ultrashort laser pulse with capacitor-coil target[J]. Physics of Plasmas, 2018, 25: 083111. doi: 10.1063/1.5000991
    [39]
    Zhang H, Shen B F, Wang W P, et al. Collisionless shock acceleration of high-flux quasimonoenergetic proton beams driven by circularly polarized laser pulses[J]. Physical Review Letters, 2017, 119: 164801. doi: 10.1103/PhysRevLett.119.164801
    [40]
    Higginson A, Gray R J, King M, et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme[J]. Nature Communication, 2018, 9: 724. doi: 10.1038/s41467-018-03063-9
    [41]
    Huntington C M, Fiuza F, Ross J S, et al. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows[J]. Nature Physics, 2015, 11: 173-176. doi: 10.1038/nphys3178
    [42]
    Weibel E S. Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution[J]. Physical Review Letters, 1959, 2(3): 83-84. doi: 10.1103/PhysRevLett.2.83
    [43]
    Fox W, Fiksel G, Bhattacharjee A, et al. Filamentation instability of counterstreaming laser-driven plasmas[J]. Physical Review Letters, 2013, 111: 225002. doi: 10.1103/PhysRevLett.111.225002
    [44]
    Jia Q, Cai H B, Wang W W, et al. Effects of the background plasma temperature on the current filamentation instability[J]. Physics of Plasmas, 2013, 20: 032113. doi: 10.1063/1.4796052
    [45]
    贾青. 束流-等离子体系统中韦伯不稳定性的解析分析及模拟应用[D]. 北京: 北京大学, 2015.

    Jia Qing. Analytical analysis and simulated applications of Weibel in stability in beam-plasma system [D]. Beijing: Peking University, 2015
    [46]
    Cai H B, Zhu S P, He X T, et al. Magnetic collimation of fast electrons in specially engineered targets irradiated by ultraintense laser pulses[J]. Physics of Plasmas, 2011, 18: 023106. doi: 10.1063/1.3553453
    [47]
    Cai H B, Mima K, Zhou W M, et al. Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition[J]. Physical Review Letters, 2009, 102: 245001. doi: 10.1103/PhysRevLett.102.245001
    [48]
    Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 2020, 16(7): 810-814. doi: 10.1038/s41567-020-0878-9
    [49]
    Quinn K, Romagnani L, Ramakrishna B, et al. Weibel-induced filamentation during an ultrafast laser-driven plasma expansion[J]. Physical Review Letters, 2012, 108: 135001. doi: 10.1103/PhysRevLett.108.135001
    [50]
    Kugland N L, Ryutov D D, Chang P Y, et al. Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas[J]. Nature Physics, 2012, 8: 809-812. doi: 10.1038/nphys2434
    [51]
    Du B, Cai H B, Zhang W S, et al. A demonstration of extracting the strength and wavelength of the magnetic field generated by the Weibel instability from proton radiography[J]. High Power Laser Science and Engineering, 2019, 7: e40. doi: 10.1017/hpl.2019.30
    [52]
    杜报, 蔡洪波, 张文帅, 等. Weibel不稳定性自生电磁场对探针质子束的偏转作用研究[J]. 物理学报, 2019, 68:185205. (Du Bao, Cai Hongbo, Zhang Wenshuai, et al. Deflection effect of electromagnetic field generated by Weibel instability on proton probe[J]. Actaica Physica Sinica, 2019, 68: 185205 doi: 10.7498/aps.68.20190775
    [53]
    Du B, Cai H B, Zhang W S, et al. Distinguishing and diagnosing the spontaneous electric and magnetic fields of Weibel instability through proton radiography[J]. Plasma Physics and Controlled Fusion, 2020, 62: 025017.
    [54]
    Dieckmann M E. The filamentation instability driven by warm electron beams: statistics and electric field generation[J]. Plasma Physics and Controlled Fusion, 2009, 51: 124042.
  • Relative Articles

    [1]Tu Shaoyong, Jiang Wei, Yin Chuansheng, Yu Chengxin, Fan Zhengfeng, Yuan Yongteng, Pu Yudong, Miao Wenyong, Hu Xin, Li Jin, Yang Yimeng, Che Xingsen, Dong Yunsong, Yang Dong, Yang Jiamin. Experimental study on the hydrodynamic instability of the decelerated inner interface in indirect-driven cylindrical implosions[J]. High Power Laser and Particle Beams, 2024, 36(12): 122001. doi: 10.11884/HPLPB202436.240379
    [2]Wang Feng, Li Yulong, Guan Zanyang, Zhang Xing, Li Jin, Huang Yunbao, Gan Huaquan, Che Xingsen. Application of compressed sensing technology in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2022, 34(3): 031021. doi: 10.11884/HPLPB202234.210250
    [3]Wu Yuji, Zhang Qing, Wang Feng, Li Yulong. Analyzing implosion symmetry based on fringe shifts of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34(12): 122002. doi: 10.11884/HPLPB202234.220238
    [4]Wang Lifeng, Ye Wenhua, Chen Zhu, Li Yongsheng, Ding Yongkun, Zhao Kaige, Zhang Jing, Li Zhiyuan, Yang Yunpeng, Wu Junfeng, Fan Zhengfeng, Xue Chuang, Li Jiwei, Wang Shuai, Hang Xudeng, Miao Wenyong, Yuan Yongteng, Tu Shaoyong, Yin Chuansheng, Cao Zhurong, Deng Bo, Yang Jiamin, Jiang Shaoen, Dong Jiaqin, Fang Zhiheng, Jia Guo, Xie Zhiyong, Huang Xiuguang, Fu Sizu, Guo Hongyu, Li Yingjun, Cheng Tao, Gao Zhen, Fang Lili, Wang Baoshan, Wang Yinghua, Zeng Weixin, Lu Yan, Kuang Yuanyuan, Zhao Zhenchao, Chen Wei, Dai Zhensheng, Gu Jianfa, Ge Fengjun, Kang Dongguo, Zhang Huasen, Qiao Xiumei, Li Meng, Liu Changli, Shen Hao, Xu Yan, Gao Yaoming, Liu Yuanyuan, Hu Xiaoyan, Xu Xiaowen, Zheng Wudi, Zou Shiyang, Wang Min, Zhu Shaoping, Zhang Weiyan, He Xiantu. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 2021, 33(1): 012001. doi: 10.11884/HPLPB202133.200173
    [5]Yü Shihan, Li Xiaofeng, Weng Suming, Zhao Yao, Ma Hanghang, Chen Min, Sheng Zhengming. Laser plasma instabilities and their suppression strategies[J]. High Power Laser and Particle Beams, 2021, 33(1): 012006. doi: 10.11884/HPLPB202133.200125
    [6]Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, Wang Weiwu, Cai Hongbo, Tian Chao, Zhang Feng, Zhang Tiankui, Deng Zhigang, Zhang Wenshuai, Teng Jian, Bi Bi, Yang Siqian, Yang Dong, Zhou Weimin, Gu Yuqiu, Zhang Baohan, Zhu Shaoping. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33(1): 012004. doi: 10.11884/HPLPB202133.200235
    [7]Gao Shasha, Wu Xiaojun, He Zhibing, He Xiaoshan, Wang Tao, Zhu Fanghua, Zhang Zhanwen. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32(3): 032001. doi: 10.11884/HPLPB202032.200039
    [8]Zhong Zheqiang, Zhang Bin. Conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate[J]. High Power Laser and Particle Beams, 2020, 32(1): 011012. doi: 10.11884/HPLPB202032.190454
    [9]Wang Feng, Zhang Xing, Li Yulong, Chen Bolun, Chen Zhongjing, Xu Tao, Liu Xincheng, Zhao Hang, Ren Kuan, Yang Jiamin, Jiang Shaoen, Zhang Baohan. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(11): 112002. doi: 10.11884/HPLPB202032.200136
    [10]Li Zhichao, Zhao Hang, Gong Tao, Li Xin, Yang Dong, Jiang Xiaohua, Zheng Jian, Liu Yonggang, Liu Yaoyuan, Chen Chaoxin, Li Sanwei, Li Qi, Pan Kaiqiang, Guo Liang, Li Yulong, Xu Tao, Peng Xiaoshi, Wu Changshu, Zhang Huasen, Hao Liang, Lan Ke, Chen Yaohua, Zheng Chunyang, Gu Peijun, Wang Feng, Cai Hongbo, Zheng Wudi, Zou Shiyang, Yang Jiamin, Jiang Shaoen, Zhang Baohan, Zhu Shaoping, Ding Yongkun. Recent research progress of optical Thomson scattering in laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32(9): 092004. doi: 10.11884/HPLPB202032.200130
    [11]Duan Shuchao, Xie Weiping, Wang Ganghua. Possibility of complete stabilization of magneto-Rayleigh-Taylor instabilities and potential for fusion[J]. High Power Laser and Particle Beams, 2018, 30(2): 020101. doi: 10.11884/HPLPB201830.170454
    [12]Yan Ji, Zheng Jianhua, Zhang Xing, Ge Fengjun, Kang Dongguo, Yuan Yongteng, Chen Li, Song Zifeng, Jiang Wei, Yu Bo, Chen Bolun, Pu Yudong, Huang Tianxuan. Quasi-one-dimensional implosion performance in D-D filled capsule based on pure shock yield mechanism[J]. High Power Laser and Particle Beams, 2015, 27(08): 082007. doi: 10.11884/HPLPB201527.082007
    [13]Pu Yudong, Chen Bolun, Huang Tianxuan, Miao Wenyong, Chen Jiabin, Zhang Jiyan, Yang Guohong, Yi Rongqing, Wei Minxi, Du Huabing, Peng Xiaoshi, Yu Bo, Jiang Wei, Yan Ji, Jing Longfei, Tang Qi, Song Zifeng, Jiang Shaoen, Yang Jiamin, Liu Shenye, Ding Yongkun. Experimental studies of implosion physics of indirect-drive inertial confinement fusion[J]. High Power Laser and Particle Beams, 2015, 27(03): 032015. doi: 10.11884/HPLPB201527.032015
    [14]Zhang Lin, Du Kai. Target technologies for laser inertial confinement fusion: State-of-the-art and future perspective[J]. High Power Laser and Particle Beams, 2013, 25(12): 3091-3097. doi: 3091
    [15]Su Ming, Yu Bo, Song Tianming, He Xiaoan, Zheng Jianhua, Huang Tianxuan, Liu Shenye, Jiang Shaoen. Applications of Geant4 toolkit to implosion physics for inertial confinement fusion experiments[J]. High Power Laser and Particle Beams, 2013, 25(08): 2130-2136. doi: 10.3788/HPLPB20132508.2130
    [16]liu shenye, yang guohong, zhang jiyan, li jun, huang yixiang, hu xin, yi rongqing, du huabing, cao zhurong, zhang haiying, ding yongkun. Experimental research of capsule implosion by X-ray backlighting radiography at Shenguang Ⅱ[J]. High Power Laser and Particle Beams, 2011, 23(12): 37-38.
    [17]teng jian, zhao zongqing, ding yongkun, gu yuqiu. Simulation of D3He fusion monoenergetic proton radiography of ICF implosions[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [18]peng xiaoshi, wang feng, tang daorun, liu shenye, huang tianxuan, liu yonggang, xu tao, chen ming, mei yu. Measurement of inertial confinement fusion reaction rate[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [19]duan bin, li yue-ming, fang quan-yu, zhang ji-yan. Calculation of temperature and density of plasmas in target pellet of ICF experiment[J]. High Power Laser and Particle Beams, 2005, 17(01): 0- .
    [20]wang li li, li jia chun. Numerical study on the RayleighTaylor instability with various initial length scale[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
  • Cited by

    Periodical cited type(2)

    1. 袁宗强,邓志刚,滕建,王为武,张天奎,张锋,田超,徐秋月,单连强,周维民,谷渝秋. 纳秒激光驱动非相对论无碰撞静电冲击波反射离子能谱测量的Geant4模拟. 强激光与粒子束. 2022(12): 63-69 . 本站查看
    2. 单连强,吴凤娟,袁宗强,王为武,蔡洪波,田超,张锋,张天奎,邓志刚,张文帅,滕建,毕碧,杨思谦,杨冬,周维民,谷渝秋,张保汉,朱少平. 激光惯性约束聚变动理学效应研究进展. 强激光与粒子束. 2021(01): 92-100 . 本站查看

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.8 %FULLTEXT: 18.8 %META: 74.9 %META: 74.9 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.8 %其他: 5.8 %其他: 0.3 %其他: 0.3 %Central District: 0.1 %Central District: 0.1 %China: 1.2 %China: 1.2 %Falls Church: 0.1 %Falls Church: 0.1 %France: 0.1 %France: 0.1 %Germany: 0.0 %Germany: 0.0 %India: 0.1 %India: 0.1 %Israel: 0.0 %Israel: 0.0 %Malaysia: 0.0 %Malaysia: 0.0 %Rochester: 0.1 %Rochester: 0.1 %Taichung: 0.0 %Taichung: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United Kingdom: 0.0 %United Kingdom: 0.0 %United States: 0.3 %United States: 0.3 %[]: 1.0 %[]: 1.0 %三亚: 0.0 %三亚: 0.0 %上海: 2.8 %上海: 2.8 %东莞: 0.1 %东莞: 0.1 %中山: 0.0 %中山: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %保定: 0.0 %保定: 0.0 %兰州: 0.1 %兰州: 0.1 %内江: 0.1 %内江: 0.1 %北京: 17.5 %北京: 17.5 %十堰: 0.2 %十堰: 0.2 %南京: 0.4 %南京: 0.4 %南平: 0.0 %南平: 0.0 %南昌: 0.0 %南昌: 0.0 %双鸭山: 0.1 %双鸭山: 0.1 %台北: 0.0 %台北: 0.0 %台州: 0.3 %台州: 0.3 %合肥: 1.3 %合肥: 1.3 %周口: 0.0 %周口: 0.0 %咸宁: 0.0 %咸宁: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.0 %唐山: 0.0 %商丘: 0.0 %商丘: 0.0 %墨西哥城: 0.1 %墨西哥城: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %太原: 0.1 %太原: 0.1 %孔敬: 0.1 %孔敬: 0.1 %孟买: 0.0 %孟买: 0.0 %宁波: 0.0 %宁波: 0.0 %安庆: 0.1 %安庆: 0.1 %宜春: 0.0 %宜春: 0.0 %宣城: 0.3 %宣城: 0.3 %宿迁: 0.0 %宿迁: 0.0 %帕莱索: 0.2 %帕莱索: 0.2 %常州: 0.0 %常州: 0.0 %常德: 0.0 %常德: 0.0 %平顶山: 0.0 %平顶山: 0.0 %广州: 0.2 %广州: 0.2 %廊坊: 0.1 %廊坊: 0.1 %弗吉: 0.0 %弗吉: 0.0 %张家口: 0.4 %张家口: 0.4 %徐州: 0.0 %徐州: 0.0 %成都: 1.0 %成都: 1.0 %扬州: 0.3 %扬州: 0.3 %拉什特: 0.2 %拉什特: 0.2 %昆明: 0.2 %昆明: 0.2 %晋城: 0.1 %晋城: 0.1 %普洱: 0.0 %普洱: 0.0 %杭州: 0.7 %杭州: 0.7 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.3 %济南: 0.3 %济宁: 0.0 %济宁: 0.0 %淄博: 0.1 %淄博: 0.1 %深圳: 1.1 %深圳: 1.1 %温州: 0.3 %温州: 0.3 %湖州: 0.2 %湖州: 0.2 %漯河: 0.7 %漯河: 0.7 %瑟普赖斯: 0.4 %瑟普赖斯: 0.4 %眉山: 0.0 %眉山: 0.0 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.0 %秦皇岛: 0.0 %纽伦堡: 0.1 %纽伦堡: 0.1 %纽瓦克: 0.0 %纽瓦克: 0.0 %绵阳: 1.3 %绵阳: 1.3 %绵阳市涪城区: 0.0 %绵阳市涪城区: 0.0 %芒廷维尤: 9.4 %芒廷维尤: 9.4 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %莫斯科: 0.0 %莫斯科: 0.0 %菏泽: 0.2 %菏泽: 0.2 %蒙哥马利: 0.1 %蒙哥马利: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.1 %衡水: 0.1 %衢州: 0.3 %衢州: 0.3 %襄阳: 0.0 %襄阳: 0.0 %西宁: 42.8 %西宁: 42.8 %西安: 0.8 %西安: 0.8 %诺沃克: 0.0 %诺沃克: 0.0 %贵港: 0.0 %贵港: 0.0 %贵阳: 0.1 %贵阳: 0.1 %费利蒙: 0.0 %费利蒙: 0.0 %辽阳: 0.1 %辽阳: 0.1 %运城: 0.5 %运城: 0.5 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.4 %郑州: 0.4 %重庆: 0.1 %重庆: 0.1 %铜仁: 0.0 %铜仁: 0.0 %长春: 0.0 %长春: 0.0 %长沙: 1.2 %长沙: 1.2 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.2 %青岛: 0.2 %香港: 0.2 %香港: 0.2 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %其他其他Central DistrictChinaFalls ChurchFranceGermanyIndiaIsraelMalaysiaRochesterTaichungTaiwan, ChinaUnited KingdomUnited States[]三亚上海东莞中山临汾丹东保定兰州内江北京十堰南京南平南昌双鸭山台北台州合肥周口咸宁哈尔滨哥伦布唐山商丘墨西哥城大连天津太原孔敬孟买宁波安庆宜春宣城宿迁帕莱索常州常德平顶山广州廊坊弗吉张家口徐州成都扬州拉什特昆明晋城普洱杭州武汉沈阳洛阳济南济宁淄博深圳温州湖州漯河瑟普赖斯眉山石家庄福州秦皇岛纽伦堡纽瓦克绵阳绵阳市涪城区芒廷维尤芜湖芝加哥苏州莫斯科菏泽蒙哥马利蚌埠衡水衢州襄阳西宁西安诺沃克贵港贵阳费利蒙辽阳运城连云港邯郸郑州重庆铜仁长春长沙长治阳泉青岛香港香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (2380) PDF downloads(202) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return