Citation: | Cai Hongbo, Zhang Wenshuai, Du Bao, et al. Characteristic and impact of kinetic effects at interfaces of inertial confinement fusion hohlraums[J]. High Power Laser and Particle Beams, 2020, 32: 092007. doi: 10.11884/HPLPB202032.200134 |
[1] |
Edwards M J, Patel P K, Lindl J D, et al. Progress towards ignition on the National Ignition Facility[J]. Physics of Plasmas, 2013, 20: 070501. doi: 10.1063/1.4816115
|
[2] |
Hurricane O A, Callahan D A, Springer P T, et al. Beyond alpha-heating: driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility[J]. Plasma Physics Controlled Fusion, 2019, 61: 014033.
|
[3] |
Kritcher A L, Hinkel D E, Callahan D A, et al. Integrated modeling of cryogenic layered highfoot experiments at the NIF[J]. Physics of Plasmas, 2016, 23(5): 052709. doi: 10.1063/1.4949351
|
[4] |
Hopkins L F Berzak, Pape S Le, Divol L, et al. Near-vacuum hohlraums for driving fusion implosions with high density carbon ablators[J]. Physics of Plasmas, 2015, 22: 056318. doi: 10.1063/1.4921151
|
[5] |
Rinderknecht H G, Amendt P A, Wilks S C, et al. Kinetic physics in ICF: present understanding and future directions[J]. Plasma Physics Controlled Fusion, 2018, 60: 064001.
|
[6] |
Ross J S, Park H S, Amendt P, et al. Thomson scattering diagnostic for the measurement of ion species fraction[J]. Review of Scientific Instruments, 2012, 83: 10E323. doi: 10.1063/1.4731007
|
[7] |
Bellei C, Amendt P A, Wilks S C, et al. Species separation in inertial confinement fusion fuels[J]. Physics of Plasmas, 2013, 20: 012701. doi: 10.1063/1.4773291
|
[8] |
Kirkwood R K, Moody J D, Kline J, et al. A review of laser–plasma interaction physics of indirect-drive fusion[J]. Plasma Physics Controlled Fusion, 2013, 55: 103001.
|
[9] |
Shan L Q, Cai H B, Zhang W S, et al. Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2018, 120: 195001. doi: 10.1103/PhysRevLett.120.195001
|
[10] |
Cai H B, Shan L Q, Yuan Z Q, et al. Study of the kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. High Energy Density Physics, 2020, 36: 100756. doi: 10.1016/j.hedp.2020.100756
|
[11] |
Li C K, Seguin F H, Frenje J A, et al. Diagnosing indirect-drive inertial-confinement-fusion implosions with charged particles[J]. Plasma Physics and Controlled Fusion, 2010, 52: 124027.
|
[12] |
Turnbull D, Colaitis A, Hansen A M, et al. , Impact of the Langdon effect on crossed-beam energy transfer[J]. Nature Physics, 2019, 16: 181-185.
|
[13] |
蔡洪波, 周沧涛, 贾青, 等. 激光驱动强流电子束产生和控制[J]. 强激光与粒子束, 2015, 27:032001. (Cai Hongbo, Zhou Cangtao, Jia Qing, et al. Laser-driven relativistic electron beam for fast ignition[J]. High Power Laser and Particle Beams, 2015, 27: 032001 doi: 10.11884/HPLPB201527.032001
|
[14] |
Thoma C, Welch D R, Clark R E, et al. Hybrid-PIC modeling of laser-plasma interactions and hot electron generation in gold hohlraum walls[J]. Physics of Plasmas, 2017, 24: 062707. doi: 10.1063/1.4985314
|
[15] |
Molvig K, Vold E L, Dodd E S, et al. Nonlinear structure of the diffusing gas-metal interface in a thermonuclear plasma[J]. Physical Review Letters, 2012, 109: 095001.
|
[16] |
Braginskii S I. Transport process in a plasma[J]. Reviews of Plasma Physics, 1965, 1: 205-311.
|
[17] |
Li C K, Petrasso R D. Charaged-particle stopping powers in inertial confinement fusion plasmas[J]. Physical Review Letters, 1993, 70(20): 3059-3063. doi: 10.1103/PhysRevLett.70.3059
|
[18] |
Zhang W S, Cai H B, Shan L Q, et al. Anomalous neutron yield in indirect-drive inertial-confinement-fusion due to the formation of collisionless shocks in the corona[J]. Nuclear Fusion, 2017, 57(17): 066012.
|
[19] |
Kirkwood R K, Moody J D, Kline J, et al. A review of laser–plasma interaction physics of indirect-drive fusion[J]. Plasma Physics and Controlled Fusion, 2013, 55: 103001.
|
[20] |
Kirkwood R K, Michel P, London R. et al. Multi-beam effects on backscatter and its saturation in experiments with conditions relevant to ignition[J]. Physics of Plasmas, 2011, 18: 056311. doi: 10.1063/1.3587122
|
[21] |
Turnbull D, Michel P, Ralph J E, et al. Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments[J]. Physical Review Letters, 2015, 114(12): 125001. doi: 10.1103/PhysRevLett.114.125001
|
[22] |
Myatt J F, Zhang J, Short R W, et al. Multiple-beam laser–plasma interactions in inertial confinement fusion[J]. Physics of Plasmas, 2014, 21: 055501. doi: 10.1063/1.4878623
|
[23] |
Dewald E L, Hartemann F, Michel P, et al. Generation and beaming of early hot electrons onto the capsule in laser-driven ignition hohlraums[J]. Physics Review Letters, 2016, 116: 075003. doi: 10.1103/PhysRevLett.116.075003
|
[24] |
Kruer W L, Wilks S C, Afeyan B B, et al. Energy transfer between crossing laser beams[J]. Physics of Plasmas, 1996, 3(1): 382-385. doi: 10.1063/1.871863
|
[25] |
Hall G N, Jones O S, Strozzi D J, et al. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 052706. doi: 10.1063/1.4983142
|
[26] |
杨冬, 李志超, 李三伟, 等. 间接驱动惯性约束聚变中的激光等离子体不稳定性[J]. 中国科学: 物理学 力学 天文学, 2018, 48:065203. (Yang Dong, Li Zhichao, Li Sanwei, et al. Laser plasma instability in indirect-drive inertial confinement fusion[J]. Scientia Sinica-Physica Mechanica&Astronamica, 2018, 48: 065203 doi: 10.1360/SSPMA2018-00056
|
[27] |
Gong T, Hao L, Li Z, et al. Recent research progress of laser plasma interactions in Shenguang laser facilities[J]. Matter and Radiation at Extremes, 2019, 4: 055202. doi: 10.1063/1.5092446
|
[28] |
Hao L, Yang D, Li X, et al. Investigation on laser plasma instability of the outer ring beams on SGIII laser facility[J]. AIP Advances, 2019, 9: 095201. doi: 10.1063/1.5087936
|
[29] |
Yan X X, Cai H B, Zhang W S, et al. Anomalous mix induced by a collisionless shock wave in an inertial confinement fusion hohlraum[J]. Nuclear Fusion, 2019, 59: 106016.
|
[30] |
Froula D H, Ross J S, Pollock B B, et al. Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering[J]. Physical Review Letters, 2007, 98: 135001. doi: 10.1103/PhysRevLett.98.135001
|
[31] |
张恩浩, 蔡洪波, 杜报, 等. 激光聚变黑腔中等离子体的热流研究[J]. 物理学报, 2020, 69:035204. (Zhang Enhao, Cai Hongbo, Du Bao, et al. Heat flow of laser-ablated gold plasma in inertial confinement fusion hohlraum[J]. Acta Phys Sin, 2020, 69: 035204 doi: 10.7498/aps.69.20191423
|
[32] |
Fiuza F, Fonseca R A, Tonge J, et al. Weibel-instability-mediated collisionless shocks in the laboratory with ultraintense lasers[J]. Physical Review Letters, 2012, 108: 235004. doi: 10.1103/PhysRevLett.108.235004
|
[33] |
Manuel M J E, Li C K, Séguin F H, et al. First measurements of Rayleigh-Taylor-induced magnetic fields in laser-produced plasmas [J]. Physical Review Letters, 108 : 255006.
|
[34] |
项志遴, 俞昌旋. 高温等离子体诊断技术 [M]. 上海:上海科学技术出版社, 1982.
Xiang Zhilin, Yu Changxuan. High temperature plasma diagnotics [M]. Shanghai: Shanghai Scientific&Technical Publishing, 1982
|
[35] |
Kaluza M C, Schlenvoigt H P, Mangles S, et al. Measurement of magnetic-field structures in a laser-wakefield accelerator[J]. Physical Review Letters, 2010, 105: 115002. doi: 10.1103/PhysRevLett.105.115002
|
[36] |
Li C K, Séguin F H, Rygg J R, et al. Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography[J]. Physical Review Letters, 2006, 97: 135003. doi: 10.1103/PhysRevLett.97.135003
|
[37] |
Rygg J R, Séguin F H, Li C K, et al. Proton radiography of inertial fusion implosions[J]. Science, 2008, 319: 1223-1225. doi: 10.1126/science.1152640
|
[38] |
Wang W W, Cai H B, Teng J, et al. Efficient production of strong magnetic fields from ultraintense ultrashort laser pulse with capacitor-coil target[J]. Physics of Plasmas, 2018, 25: 083111. doi: 10.1063/1.5000991
|
[39] |
Zhang H, Shen B F, Wang W P, et al. Collisionless shock acceleration of high-flux quasimonoenergetic proton beams driven by circularly polarized laser pulses[J]. Physical Review Letters, 2017, 119: 164801. doi: 10.1103/PhysRevLett.119.164801
|
[40] |
Higginson A, Gray R J, King M, et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme[J]. Nature Communication, 2018, 9: 724. doi: 10.1038/s41467-018-03063-9
|
[41] |
Huntington C M, Fiuza F, Ross J S, et al. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows[J]. Nature Physics, 2015, 11: 173-176. doi: 10.1038/nphys3178
|
[42] |
Weibel E S. Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution[J]. Physical Review Letters, 1959, 2(3): 83-84. doi: 10.1103/PhysRevLett.2.83
|
[43] |
Fox W, Fiksel G, Bhattacharjee A, et al. Filamentation instability of counterstreaming laser-driven plasmas[J]. Physical Review Letters, 2013, 111: 225002. doi: 10.1103/PhysRevLett.111.225002
|
[44] |
Jia Q, Cai H B, Wang W W, et al. Effects of the background plasma temperature on the current filamentation instability[J]. Physics of Plasmas, 2013, 20: 032113. doi: 10.1063/1.4796052
|
[45] |
贾青. 束流-等离子体系统中韦伯不稳定性的解析分析及模拟应用[D]. 北京: 北京大学, 2015.
Jia Qing. Analytical analysis and simulated applications of Weibel in stability in beam-plasma system [D]. Beijing: Peking University, 2015
|
[46] |
Cai H B, Zhu S P, He X T, et al. Magnetic collimation of fast electrons in specially engineered targets irradiated by ultraintense laser pulses[J]. Physics of Plasmas, 2011, 18: 023106. doi: 10.1063/1.3553453
|
[47] |
Cai H B, Mima K, Zhou W M, et al. Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition[J]. Physical Review Letters, 2009, 102: 245001. doi: 10.1103/PhysRevLett.102.245001
|
[48] |
Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 2020, 16(7): 810-814. doi: 10.1038/s41567-020-0878-9
|
[49] |
Quinn K, Romagnani L, Ramakrishna B, et al. Weibel-induced filamentation during an ultrafast laser-driven plasma expansion[J]. Physical Review Letters, 2012, 108: 135001. doi: 10.1103/PhysRevLett.108.135001
|
[50] |
Kugland N L, Ryutov D D, Chang P Y, et al. Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas[J]. Nature Physics, 2012, 8: 809-812. doi: 10.1038/nphys2434
|
[51] |
Du B, Cai H B, Zhang W S, et al. A demonstration of extracting the strength and wavelength of the magnetic field generated by the Weibel instability from proton radiography[J]. High Power Laser Science and Engineering, 2019, 7: e40. doi: 10.1017/hpl.2019.30
|
[52] |
杜报, 蔡洪波, 张文帅, 等. Weibel不稳定性自生电磁场对探针质子束的偏转作用研究[J]. 物理学报, 2019, 68:185205. (Du Bao, Cai Hongbo, Zhang Wenshuai, et al. Deflection effect of electromagnetic field generated by Weibel instability on proton probe[J]. Actaica Physica Sinica, 2019, 68: 185205 doi: 10.7498/aps.68.20190775
|
[53] |
Du B, Cai H B, Zhang W S, et al. Distinguishing and diagnosing the spontaneous electric and magnetic fields of Weibel instability through proton radiography[J]. Plasma Physics and Controlled Fusion, 2020, 62: 025017.
|
[54] |
Dieckmann M E. The filamentation instability driven by warm electron beams: statistics and electric field generation[J]. Plasma Physics and Controlled Fusion, 2009, 51: 124042.
|