Peng Yi, Zhang Jingyu, Chen Yixue. Application of improved transmutation trajectory analysis in neutron activation calculation[J]. High Power Laser and Particle Beams, 2017, 29: 036018. doi: 10.11884/HPLPB201729.160194
Citation: Lian Zhongmou, Feng Gang, Tong Siyuan, et al. Simulation analysis of background field enhancement of four-rail electromagnetic launcher[J]. High Power Laser and Particle Beams, 2020, 32: 105003. doi: 10.11884/HPLPB202032.200135

Simulation analysis of background field enhancement of four-rail electromagnetic launcher

doi: 10.11884/HPLPB202032.200135
  • Received Date: 2020-05-19
  • Rev Recd Date: 2020-09-02
  • Publish Date: 2020-09-29
  • The inductance gradient of the background field enhancement scheme of the four-rail electromagnetic launcher is simulated. Based on the principle of virtual work, the formula of the inductance gradient of the four-rail launchers under the background field is derived. A three-dimensional background field simulation model is established to analyze the variation law of inductance gradient under different main and additional rail parameters. The simulation results show that the inductance gradient of the system can be improved by increasing the launcher caliber, reducing the distance between the main and additional rails and the cross-sectional area of the additional rails. With the enhancement of background field, the proximity effect becomes obvious when the height of main rail reaches 57% of the caliber. Under the same cross-sectional area, the thickness of the additional rails should be reduced to increase the inductance gradient of the system, and the height of the additional rails should be reduced to alleviate the proximity effect. Concave cross-section additional rail can obviously improve the current proximity effect.
  • [1]
    马伟明, 鲁军勇. 电磁发射技术[J]. 国防科技大学学报, 2016, 38(6):1-5. (Ma Weiming, Lu Junyong. Electromagnetic launch technology[J]. Journal of National University of Defense Technology, 2016, 38(6): 1-5 doi: 10.11887/j.cn.201606001
    [2]
    刘明, 舒涛, 薛新鹏. 新型四极轨道电磁发射器[J]. 火力与指挥控制, 2019, 44(3):23-27. (Liu Ming, Shu Tao, Xue Xinpeng. A new four-pole rail electromagnetic launcher[J]. Fire Control & Command Control, 2019, 44(3): 23-27 doi: 10.3969/j.issn.1002-0640.2019.03.004
    [3]
    任波涛. 四轨电磁轨道炮概要设计与有限元分析[D]. 南京: 南京理工大学, 2011: 16-24.

    Ren Botao. General design and finite element analysis of four-rail electromagnetic railgun[D]. Nanjing: Nanjing University of Science and Technology, 2011: 16-24)
    [4]
    Yang Z Y, Feng G, Xue X P, et al. An electromagnetic rail launcher by quadrupole magnetic field for heavy intelligent projectiles[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1095-1100.
    [5]
    Liu S, Miao H, Guan J, et al. Investigation of electromagnetic characteristic in series-connected augmented quadrupole rail launcher[J]. IEEE Transactions on Plasma Science, 2020, 48(1): 299-304.
    [6]
    童思远, 冯刚, 杨志勇, 等. 导弹四级磁场电枢轨道过盈配合参数优化[J]. 强激光与粒子束, 2019, 31:013201. (Tong Siyuan, Feng Gang, Yang Zhiyong, et al. Optimization of interference coordination parameters of the four-stage magnetic field armature rail of missiles[J]. High Power Laser and Particle Beams, 2019, 31: 013201 doi: 10.11884/HPLPB201931.180252
    [7]
    杨志勇, 冯刚, 童思远, 等. 强脉冲电流四极磁场导轨瞬态动力学分析[J]. 弹箭与制导学报, 2019, 39(3):119-124, 129. (Yang Zhiyong, Feng Gang, Tong Siyuan, et al. Transient dynamic analysis of four-pole magnetic field guide rail with strong pulsed current[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(3): 119-124, 129
    [8]
    Novac B M, Smith I R, Enache M C, et al. Studies of a very high efficiency electromagnetic launcher[J]. Journal of Physics D, 2002, 35(12): 1447-1457.
    [9]
    Marshall R A, Wang Y. Railguns: Their science and technology[M]. Beijing: China Machine Press, 2004: 22-35.
    [10]
    Grover F W. Inductance calculations: working formulas and tables[M]. New York: Dover Publications, 1962: 22-66.
    [11]
    Kerrisk J F. Current diffusion and inductance calculations for rail-gun conductors[R]. USA: Los Alamos National Lab, 1981.
    [12]
    周媛, 严萍, 袁伟群, 等. 电磁轨道发射装置中导轨几何参数对电感梯度的影响[J]. 电工电能新技术, 2009, 28(3):23-27, 35. (Zhou Yuan, Yan Ping, Yuan Weiqun, et al. Effect of geometric parameters of guide rail on inductance gradient in electromagnetic rail launcher[J]. Advanced Technology of Electrical Engineering and Energy, 2009, 28(3): 23-27, 35 doi: 10.3969/j.issn.1003-3076.2009.03.006
    [13]
    刘守豹, 阮江军, 张亚东, 等. 增强型轨道炮电感梯度及其影响因素[J]. 电工电能新技术, 2009, 28(2):50-53. (Liu Shoubao, Ruan Jiangjun, Zhang Yadong, et al. Inductance gradient of enhanced railgun and its influencing factors[J]. Advanced Technology of Electrical Engineering and Energy, 2009, 28(2): 50-53 doi: 10.3969/j.issn.1003-3076.2009.02.012
    [14]
    童思远, 冯刚, 连仲谋, 等. 四轨电磁发射器电感梯度影响因素分析[J]. 兵器装备工程学报, 2019, 40(12):221-224. (Tong Siyuan, Feng Gang, Lian Zhongmou, et al. Analysis of factors influencing the inductance gradient of four-rail electromagnetic launcher[J]. Journal of Ordnance and Equipment Engineering, 2019, 40(12): 221-224 doi: 10.11809/bqzbgcxb2019.12.043
    [15]
    杨志勇, 冯刚, 刘瑜倩, 等. 增强型导弹四极场电磁轨道发射器研究[J]. 空军工程大学学报(自然科学版), 2019, 20(3):77-83. (Yang Zhiyong, Feng Gang, Liu Yuqian, et al. Research on enhanced missile four-pole field electromagnetic rail launcher[J]. Journal of Air Force Engineering University (Natural Science Edition), 2019, 20(3): 77-83
    [16]
    徐蓉, 袁伟群, 成文凭, 等. 增强型电磁轨道发射器的电磁场仿真分析[J]. 高电压技术, 2014, 40(4):1065-1070. (Xu Rong, Yuan Weiqun, Cheng Wenping, et al. Electromagnetic field simulation analysis of enhanced electromagnetic rail launcher[J]. High Voltage Technology, 2014, 40(4): 1065-1070
    [17]
    贺景瑞, 李小将. 增强型电磁轨道发射器电磁场和电感梯度仿真分析[J]. 兵工自动化, 2016, 37(8):78-82, 86. (He Jingrui, Li Xiaojiang. Simulation analysis of electromagnetic field and inductance gradient of enhanced electromagnetic rail launcher[J]. Ordnance Industry Automation, 2016, 37(8): 78-82, 86
    [18]
    Liebfried O, Schneider M, Stankevic T, et al. Velocity-induced current profiles inside the rails of an electric launcher[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1520-1525.
    [19]
    王莹, 肖锋. 电炮原理[M]. 北京: 国防工业出版社, 1995.

    Wang Ying, Xiao Feng. Principle of electric gun[M]. Beijing: National Defense Industry Press, 1995
  • Relative Articles

    [1]Wang Xiangyu, Lu Yanlei, Zhu Yufeng, Fang Xu, Qiao Hanqing, Zhang Xingjia. Design and development of compact high power subnanosecond pulse compression device[J]. High Power Laser and Particle Beams, 2023, 35(2): 025006. doi: 10.11884/HPLPB202335.220254
    [2]Lian Yudong, Wang Yuhe, Zhang Yuqin, Han Shiwei, Yu Yang, Qi Xuan, Luan Nannan, Bai Zhenxu, Wang Yulei, Lü Zhiwei. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33(5): 051001. doi: 10.11884/HPLPB202133.210006
    [3]Zhang Xingjia, Lu Yanlei, Fan Yajun, Shi Lei, Xia Wenfeng, Qiao Hanqing. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29(11): 115002. doi: 10.11884/HPLPB201729.170101
    [4]Shi Lei, Zhu Yufeng, Lu Yanlei, Xia Wenfeng, Qiao Hanqing, Yi Chaolong, Fan Yajun. Pulse compression based on pulse forming line charging techonlogy[J]. High Power Laser and Particle Beams, 2015, 27(06): 065003. doi: 10.11884/HPLPB201527.065003
    [5]Xiong Zhengfeng, Ning Hui, Chen Huaibi, Tang Chuanxiang. Design of compact power combiner in rectangular waveguide[J]. High Power Laser and Particle Beams, 2014, 26(06): 063013. doi: 10.11884/HPLPB201426.063013
    [6]Bai Zhen, Li Guolin, Zhang Jun. X-band high power microwave mode-selective directional coupler[J]. High Power Laser and Particle Beams, 2013, 25(07): 1747-1750. doi: 10.3788/HPLPB20132507.1747
    [7]Zhu Yufeng, Shi Lei, Fan Yajun, Xia Wenfeng. Application of forming-line pulse-compression in ultra-wide-spectrum technology[J]. High Power Laser and Particle Beams, 2013, 25(09): 2448-2452. doi: 10.3788/HPLPB20132509.2448
    [8]liang qinjin, shi xiaoyan, pan wenwu. High voltage semiconductor fast ionization device and its properties of pulse compression[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [9]zhong shaopeng, zhao minghua, wang baoliang. Design and test of sub-harmonic cavity's coupler for 150 MeV linac of Shanghai synchrotron radiation facility[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- .
    [10]guo qi, lü zhiwei, zhu chengyu. High-quality pulse shape realized in two-step stimulated Brillouin scattering pulse compression system[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [11]gao zhixing, tang xiuzhang, zhang haifeng, xiang yihuai. Excimer laser pulse compressed with pulse feedback[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [12]shi de-wan, wang wen-xiang, gong yu-bin, wei yan-yu. Solution of field distribution in stripline directional coupler[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [13]zhang zhi-qiang, fang jin-yong, hao wen-xi, qiu shi, ning hui. Numerical simulation and optimization design of X-band pulse compression equipment[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [14]liu wen-bing, zhu qi-hua, feng guo-ying, wang xiao, wang fang. Effects of non-parallel grating pair on pulse space-time profiles[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- .
    [15]xie su-long, meng fan-bao, ma hong-ge. Effects of gas switch on power gain in pulse compressed system[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [16]zhang wei, wu jian-hong, li chao-ming. Effect of wavefront aberration of grating on pulse compression[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [17]wang chao, lzhi-wei, he wei-ming. Picosecond pulse generation by stimulated Brillouin scattering compressor[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [18]ning hui, fang jin-yong, li ping, liu jing-yue, liu guo-zhi, xiao li-lin, tong de-chun, lin yu-zheng, . Experiment research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Cited by

    Periodical cited type(1)

    1. 白维达, 江涛, 熊正锋, 蒋自力. S波段高精度快速倒相开关设计. 强激光与粒子束. 2020(05): 47-50 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.6 %FULLTEXT: 25.6 %META: 70.7 %META: 70.7 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.9 %其他: 7.9 %其他: 0.5 %其他: 0.5 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %Korea Republic of: 0.2 %Korea Republic of: 0.2 %Pakistan: 0.5 %Pakistan: 0.5 %Switzerland: 0.1 %Switzerland: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %[]: 2.0 %[]: 2.0 %上海: 0.7 %上海: 0.7 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %内江: 0.1 %内江: 0.1 %北京: 14.0 %北京: 14.0 %十堰: 0.1 %十堰: 0.1 %南京: 0.3 %南京: 0.3 %南平: 0.1 %南平: 0.1 %南通: 0.2 %南通: 0.2 %卢布林: 0.3 %卢布林: 0.3 %台北: 0.1 %台北: 0.1 %台州: 0.5 %台州: 0.5 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.3 %咸阳: 0.3 %哈尔科夫: 0.4 %哈尔科夫: 0.4 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %大田广域: 0.1 %大田广域: 0.1 %天津: 0.3 %天津: 0.3 %孟买: 0.5 %孟买: 0.5 %安康: 0.1 %安康: 0.1 %宣城: 0.2 %宣城: 0.2 %山景: 0.1 %山景: 0.1 %巴中: 0.1 %巴中: 0.1 %常州: 0.3 %常州: 0.3 %广州: 0.1 %广州: 0.1 %张家口: 0.3 %张家口: 0.3 %德里: 0.2 %德里: 0.2 %德黑兰: 0.6 %德黑兰: 0.6 %忠清北道: 0.1 %忠清北道: 0.1 %成都: 0.1 %成都: 0.1 %新乡: 0.1 %新乡: 0.1 %新德里: 0.2 %新德里: 0.2 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.2 %杭州: 1.2 %武汉: 0.1 %武汉: 0.1 %毕晓普: 0.1 %毕晓普: 0.1 %汉诺威: 0.1 %汉诺威: 0.1 %深圳: 0.3 %深圳: 0.3 %温州: 0.2 %温州: 0.2 %湖州: 0.3 %湖州: 0.3 %漯河: 0.9 %漯河: 0.9 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.3 %纽约: 0.3 %聊城: 0.3 %聊城: 0.3 %芒廷维尤: 14.4 %芒廷维尤: 14.4 %芝加哥: 0.1 %芝加哥: 0.1 %衢州: 0.3 %衢州: 0.3 %西孟加拉邦: 0.2 %西孟加拉邦: 0.2 %西宁: 45.2 %西宁: 45.2 %西安: 0.4 %西安: 0.4 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.2 %运城: 0.2 %郑州: 0.6 %郑州: 0.6 %重庆: 0.1 %重庆: 0.1 %长沙: 0.3 %长沙: 0.3 %长治: 0.1 %长治: 0.1 %阳泉: 0.2 %阳泉: 0.2 %黄山: 0.1 %黄山: 0.1 %其他其他ChinaIndiaKorea Republic ofPakistanSwitzerlandTaiwan, ChinaUnited States[]上海中山临汾丹东丽水内江北京十堰南京南平南通卢布林台北台州合肥咸阳哈尔科夫哥伦布嘉兴大田广域天津孟买安康宣城山景巴中常州广州张家口德里德黑兰忠清北道成都新乡新德里无锡昆明晋城普洱杭州武汉毕晓普汉诺威深圳温州湖州漯河珠海石家庄福州秦皇岛纽约聊城芒廷维尤芝加哥衢州西孟加拉邦西宁西安贵阳运城郑州重庆长沙长治阳泉黄山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article views (1309) PDF downloads(41) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return