Citation: | Wang Feng, Zhang Xing, Li Yulong, et al. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112002. doi: 10.11884/HPLPB202032.200136 |
[1] |
Hurricane O A, Callahan D A, Casey D T, et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nature Physics, 2016, 12: 800-806. doi: 10.1038/nphys3720
|
[2] |
Meezan N B, Edwards M J, Hurricane O A, et al. Indirect drive ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2017, 59: 014021. doi: 10.1088/0741-3335/59/1/014021
|
[3] |
Kline J L, Batha S H, Benedetti L R, et al. Progress of indirect drive inertial confinement fusion in the United States[J]. Nuclear Fusion, 2019, 59: 112018. doi: 10.1088/1741-4326/ab1ecf
|
[4] |
Clark D S, Weber C R, Milovich J L, et al. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility[J]. Physics of Plasmas, 2016, 23: 056302. doi: 10.1063/1.4943527
|
[5] |
Gao Liang, Liang Jinyang, Li Chiye, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 2014, 516: 74-77. doi: 10.1038/nature14005
|
[6] |
Engelhorn K, Hilsabeck T J, Kilkenny J, et al. Sub-nanosecond single line-of-sight (SLOS) X-ray imagers (invited)[J]. Review of Scientific Instruments, 2018, 89: 10G123. doi: 10.1063/1.5039648
|
[7] |
Theobald W, Sorce C, Bedzyk M, et al. The single-line-of-sight, time-resolved X-ray imager diagnostic on OMEGA[J]. Review of Scientific Instruments, 2018, 89: 10G117. doi: 10.1063/1.5036767
|
[8] |
Nagel S R, Hilsabeck T J, Bell P M, et al. Investigating high speed phenomena in laser plasma interactions using dilation X-ray imager[J]. Review of Scientific Instruments, 2014, 85: 11E504. doi: 10.1063/1.4890396
|
[9] |
Hilsabeck T J, Nagel A R, Hares J D, et.al. Picosecond imaging of inertial confinement fusion plasmas using electron pulse-dilation[C]// Proc of SPIE.2017: 1032805.
|
[10] |
Nakagawa K, Iwasaki A, Oishi Y, et al. Sequentially timed all-optical mapping photography (STAMP)[J]. Nature Photonics, 2014, 8(9): 695-700. doi: 10.1038/nphoton.2014.163
|
[11] |
Pickworth L A, McCarville T, Decker T, et al. A Kirkpatrick-Baez microscope for the National Ignition Facility[J]. Review of Scientific Instruments, 2014, 85: 11D611. doi: 10.1063/1.4886433
|
[12] |
Pickworth L A, Ayers J, Bell P, et al. The National Ignition Facility modular Kirkpatrick-Baez microscope[J]. Review of Scientific Instruments, 2016, 87: 11E316. doi: 10.1063/1.4960417
|
[13] |
Marshall F J, Bahr R E, Goncharov V N, et al. A framed, 16-image Kirkpatrick–Baez X-ray microscope[J]. Review of Scientific Instruments, 2017, 88: 093702. doi: 10.1063/1.5000737
|
[14] |
Rosch R, Trosseille C, Caillaud T, et al. First set of gated X-ray imaging diagnostics for the Laser Megajoule facility[J]. Review of Scientific Instruments, 2016, 87: 033706. doi: 10.1063/1.4942930
|
[15] |
Zhang X, Chen Z, Li Y, et al. A four-channels reflective Kirkpatrick-Baez microscope for the hot spot diagnostic in the 100 kJ laser driven inertial confinement fusion in China[J]. J Instrum, 2019, 14: C11010. doi: 10.1088/1748-0221/14/11/C11010
|
[16] |
Yaran, L i, Baozhong, et al. Development of an X-ray eight-image Kirkpatrick-Baez diagnostic system for China's laser fusion facility[J]. Applied Optics, 2017, 56: 3311-3318. doi: 10.1364/AO.56.003311
|
[17] |
Xie Q, Mu B, Li Y, et al. Development of high resolution dual-energy KBA microscope with large field of view for RT-instability diagnostics at SG-III facility[J]. Optics Express, 2017, 25(3): 2608-2617. doi: 10.1364/OE.25.002608
|
[18] |
Pikuz T A, Faenov A Y, Skobelev I Y, et al. Highly efficient X-ray imaging and backlighting schemes based on spherically bent crystals[C]// Proc of SPIE. 2004: 5196: 362-374.
|
[19] |
Aglitskiy Y, Lehecka T, Obenschain S, et al. High-resolution monochromatic X-ray imaging system based on spherically bent crystals[J]. Applied Optics, 1998, 37(22): 5253-5261. doi: 10.1364/AO.37.005253
|
[20] |
陈伯伦, 韦敏习, 杨正华, 等. 球面弯晶的背光成像特性[J]. 强激光与粒子束, 2013, 25(3):641-645. (Chen Bolun, Wei Minxi, Yang Zhenghua, et al. Character of backlight imaging based on spherically bent crystal[J]. High Power Laser and Particle Beams, 2013, 25(3): 641-645 doi: 10.3788/HPLPB20132503.0641
|
[21] |
陈伯伦, 杨正华, 韦敏习, 等. 神光II激光装置X射线高分辨单色成像技术[J]. 强激光与粒子束, 2013, 25(12):3119-3122. (Chen Bolun, Yang Zhenghua, Wei Minxi, et al. High-resolution monochromatic X-ray imaging techniques applied to Shenguang II laser facility[J]. High Power Laser and Particle Beams, 2013, 25(12): 3119-3122 doi: 10.3788/HPLPB20132512.3119
|
[22] |
杨正华, 陈伯伦, 韦敏习, 等. 高分辨球面弯晶单色成像系统研制与应用[J]. 强激光与粒子束, 2013, 25(9):2267-2269. (Yang Zhenghua, Chen Bolun, Wei Minxi, et al. , Development and application of high-resolution spherically bent crystal monochromatic imaging system[J]. High Power Laser and Particle Beams, 2013, 25(9): 2267-2269 doi: 10.3788/HPLPB20132509.2267
|
[23] |
Chen Bolun, Yang Zhenghua, Wei Minxi, et al. Implosion dynamics measurements by monochromatic X-ray radiography in inertial confinement fusion[J]. Physics of Plasmas, 2014, 21: 122705. doi: 10.1063/1.4903336
|
[24] |
Bradley D K, Bell P M, Landen O L, et al. Development and characterization of a pair of 30-40 ps X-ray framing cameras[J]. Review of Scientific Instruments, 1995, 66: 1. doi: 10.1063/1.1145258
|
[25] |
Hilsabeck T J, Hares J D, Kilkenny J D, et al. Pulse-dilation enhanced gated optical imager with 5 ps resolution (invited)[J]. Review of Scientific Instruments, 2010, 81: 10E317. doi: 10.1063/1.3479111
|
[26] |
Nagel S R, Hilsabeck T J, Bell P M, et al. Dilation X-ray imager a new/faster gated X-ray imager for the NIF[J]. Review of Scientific Instruments, 2012, 83: 10E116. doi: 10.1063/1.4732849
|
[27] |
Engelhorn K, Hilsabeck T J, Kilkenny J D, et al. Single Line-Of-Sight (SLOS) X-ray imagers[C]// High Temperature Plasma Diagnostic Conference. 2018.
|
[28] |
Ress D, Lerche R A, Ellis R J, et al. Neutron imaging of laser fusion targets[J]. Science, 1988, 241(4868): 956-958. doi: 10.1126/science.241.4868.956
|
[29] |
Disdier L, Rouyer A, Wilson D C, et al. High-resolution neutron imaging of laser imploded DT targets[J]. Nuclear Instruments & Methods in Physics Research, 2002, 489: 496-502.
|
[30] |
Christensen C R, Barnes C W, Morgan G L, et al. First results of pinhole neutron imaging for inertial confinement fusion[J]. Review of Scientific Instruments, 2003, 74(5): 2690-2694. doi: 10.1063/1.1569407
|
[31] |
Disdier L, Rouyer A, Lantuejoul I, et al. Inertial confinement fusion neutron images[J]. Physics of Plasmas, 2006, 13: 056317. doi: 10.1063/1.2174828
|
[32] |
Grim G P, Bradley P A, Day R D, et al. Neutron imaging development for megajoule scale inertial confinement fusion experiments[C]//Journal of Physics Conference Series. 2008, 112: 032078.
|
[33] |
Caillaud T, Landoas O, Briat M, et al. Development of the large neutron imaging system for inertial confinement fusion experiments[J]. Review of Scientific Instruments, 2012, 83: 033502. doi: 10.1063/1.3689768
|
[34] |
Merrill F E, Bower D, Buckles R, et al. The neutron imaging diagnostic at NIF[J]. Review of Scientific Instruments, 2012, 83: 10D317. doi: 10.1063/1.4739242
|
[35] |
Volegov P L, Danley C R, Fittinghoff D N, et al. Neutron source reconstruction from pinhole imaging at National Ignition Facility[J]. Review of Scientific Instruments, 2014, 85: 023508. doi: 10.1063/1.4865456
|
[36] |
Volegov P L, Danley C R, Fittinghoff D N, et al. Self characterization of a coded aperture array for neutron source imaging[J]. Review of Scientific Instruments, 2014, 85: 123506. doi: 10.1063/1.4902978
|
[37] |
Fatherley V E, Barker D A, Fittinghoff D N, et al. Design of the aperture array for neutron imaging from the north pole of the National Ignition Facility[C]// Proc of SPIE. 2016: 99660B.
|
[38] |
Fatherley V E, Fittinghoff D N, Hibbard R L, et al. Aperture design for the third neutron and first gamma-ray imaging systems for the National Ignition Facility[J]. Review of Scientific Instruments, 2018, 89: 10I127. doi: 10.1063/1.5039328
|
[39] |
Lerche R A, Ress D, Ellis R J, et al. Neutron penumbral imaging of laser-fusion targets[J]. Laser & Particle Beams, 1991, 9(1): 99-118.
|
[40] |
赵宗清, 丁永坤, 刘东剑, 等. 中子半影成像的数值模拟[J]. 强激光与粒子束, 2006, 18(7):1203-1207. (Zhao Zongqing, Ding Yongkun, Liu Dongjian, et al. Numerical simulation of neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2006, 18(7): 1203-1207
|
[41] |
郝轶聃, 缪文勇, 赵宗清, 等. 中子半影成像中椭圆度误差的解析计算[J]. 强激光与粒子束, 2007, 19(3):507-510. (Hao Yidan, Miao Wenyong, Zhao Zongqing, et al. Analytic calculation of ellipticity error effect in neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2007, 19(3): 507-510
|
[42] |
余波, 苏明, 黄天晅, 等. 基于100kJ激光装置的中子半影锥成像系统设计[J]. 强激光与粒子束, 2013, 25(10):2604-2610. (Yu Bo, Su Ming, Huang Tianxuan, et al. Designing of diagnostic system for neutron penumbral imaging based on Shenguang-Ⅲ facility[J]. High Power Laser and Particle Beams, 2013, 25(10): 2604-2610 doi: 10.3788/HPLPB20132510.2604
|
[43] |
Chen Z, Zhang X, Wang F, et al. Design of neutron imaging aperture for inertial confinement fusion in laser fusion research center[J]. Journal of Instrumentation, 2019, 14: C11007. doi: 10.1088/1748-0221/14/11/C11007
|
[44] |
Ng R. Digital light field photography[M]. Palo Atto: Stanford University, 2006.
|
[45] |
陈佃文. 基于4D光场数据的深度信息获取[D]. 北京: 北京信息科技大学, 2016.
Chen Dianwen. Depth information acquisition based on 4D light field data[D]. Beijing: Beijing Information Science & Technology University, 2016.
|
[46] |
Mousnier A, Vural E, Guillemot C, et al. Partial light field tomographic reconstruction from a fixed-camera focal stack[J]. Computer Science, arxiv: 1503.01P03, 2015: 1-10.
|