Citation: | Wang Zhebin, Duan Xiaoxi, Zhang Chen, et al. Experimental research on high-pressure loading technology of multiple thermodynamic paths on 10 kJ-level laser facility[J]. High Power Laser and Particle Beams, 2020, 32: 092008. doi: 10.11884/HPLPB202032.200139 |
Davidson R C. Frontiers in high energy density physics: The X-games of contemporary science[M]. Washington: The National Academies Press, 2002.
|
Remington B A. High energy density laboratory astrophysics[J]. Plasma Physics and Controlled Fusion, 2005, 47: A191-A203. doi: 10.1088/0741-3335/47/5A/014
|
Remington B A, Rudd R E, Wark J S, et al. From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation[J]. Physics of Plasmas, 2015, 22: 090501. doi: 10.1063/1.4930134
|
Veeser L R, Solem J C. Studies of laser-driven shock-waves in Aluminum[J]. Physical Review Letters, 1978, 40(21): 1391-1394. doi: 10.1103/PhysRevLett.40.1391
|
Cottet F, Hallouin M, Romain J P, et al. Enhancement of a laser-driven shock-wave up to 10 TPa by the impedance-match technique[J]. Applied Physics Letters, 1985, 47(7): 678-680. doi: 10.1063/1.96055
|
Cauble R, Phillion D W, Hoover T J, et al. Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils[J]. Physical Review Letters, 1993, 70(14): 2102-2105. doi: 10.1103/PhysRevLett.70.2102
|
Rothman S D, Evans A M, Horsfield C J, et al. Impedance match equation of state experiments using indirectly laser-driven multimegabar shocks[J]. Physics of Plasmas, 2002, 9(5): 1721-1733. doi: 10.1063/1.1465419
|
Hicks D G, Boehly T R, Celliers P M, et al. Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa[J]. Physical Review B, 2009, 79: 014112. doi: 10.1103/PhysRevB.79.014112
|
Hicks D G, Boehly T R, Celliers P M, et al. Shock compression of quartz in the high-pressure fluid regime[J]. Physics of Plasmas, 2005, 12: 082702. doi: 10.1063/1.2009528
|
Eggert J H, Hicks D G, Celliers P M, et al. Melting temperature of diamond at ultrahigh pressure[J]. Nature Physics, 2010, 6(1): 40-43. doi: 10.1038/nphys1438
|
Batani D, Morelli A, Tomasini M, et al. Equation of state data for iron at pressures beyond 10 Mbar[J]. Physical Review Letters, 2002, 88: 235502. doi: 10.1103/PhysRevLett.88.235502
|
Batani D, Balducci A, Beretta D, et al. Equation of state data for gold in the pressure range < 0 TPa[J]. Physical Review B, 2000, 61(14): 9287-9294. doi: 10.1103/PhysRevB.61.9287
|
Duffy T S. Ramp compression of iron and magnesium oxide to 2.5 Mbar at the Omega laser facility[R]. DOE/SSAA Symposium, 2012.
|
Park H, Remington B A, Braun D, et al. Quasi-isentropic material property studies at extreme pressures: from Omega to NIF[J]. Journal of Physics: Conference Series, 2008, 112: 042024. doi: 10.1088/1742-6596/112/4/042024
|
Barker L M. High pressure quasi-isentropic impact experiments[R]. Santa Fe: Sandia National Laboratories. 1984.
|
Barker L M, Scott D D. Development of a high-pressure quasi-isentropic plane wave generating capability[R]. SAND84-0432: 1-50.
|
Chhabildas L C, Asay J R, Barker L M. Relationship of fragment size to normalized spall strength for materials[R]. SAND 88-0306.
|
Chhabildas L C, Asay J R, Barker L M. Dynamic quasi-isentropic loading of tungsten[R]. SAND89-0975C.
|
Xiong H, Zhang L, Chen L, et al. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally graded material[J]. Metallurgical and Materials Transactions A, 2000, 31: 2369-2376. doi: 10.1007/s11661-000-0152-9
|
柏劲松, 沈强, 唐蜜, 等. W-Mo-Ti-Mg体系阻抗梯度飞片无冲击驱动过程数值分析[J]. 振动与冲击, 2010, 29(6):72-75. (Bai Jingsong, Shen Qiang, Tang Mi, et al. Computational of the W-Mo-Ti-Mg graded impedance impactor complexity loadings and shockless compressions[J]. Journal of Vibration & Shock, 2010, 29(6): 72-75 doi: 10.3969/j.issn.1000-3835.2010.06.018
|
Smith R F, Eggert J H, Jeanloz R, et al. Ramp compression of diamond to five terapascals[J]. Nature, 2014, 511(7509): 330-333. doi: 10.1038/nature13526
|
Fu S Z, Huang X G, Ma M X, et al. Analysis of measurement error in the experiment of laser equation of state with impedance-match way and the Hügoniot data of Cu up to similar to 2.24 TPa with high precision[J]. Journal of Applied Physics, 2007, 191: 043517.
|
Liu W, Dan X X, Jiang S E, et al. Laser-driven shock compression of gold foam in the terapascal pressure range[J]. Physics of Plasmas, 2018, 25: 062707. doi: 10.1063/1.5026623
|
Xue Q X, Wang Z B, Jiang S E, et al. Laser-direct-driven quasi-isentropic experiments on aluminum[J]. Physics of Plasmas, 2014, 21: 072709. doi: 10.1063/1.4890851
|
Duan Xiaoxi, Zhang Chen, Guan Zanyang, et al. Transparency measurement of lithium fluoride under laser-driven accelerating shock loading [J]. Journal of Applied Physics, 2020, 128:015902.
|
Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
|
王哲斌, 杨冬, 张惠鸽, 等. 光学条纹相机时间扫描性能应用研究[J]. 强激光与粒子束, 2012, 24(8):1836-1840. (Wang Zhebin, Yang Dong, Zhang Huige, et al. Sweep time performance of optic streak camera[J]. High Power Laser and Particle Beams, 2012, 24(8): 1836-1840 doi: 10.3788/HPLPB20122408.1836
|
王哲斌, 蒋小华, 李三伟, 等. 辐射驱动冲击波速度被动式诊断技术研究[J]. 强激光与粒子束, 2013, 25(2):375-380. (Wang Zhebin, Jiang Xiaohua, Li Sanwei, et al. Passive measurement of radiation driven shock velocity[J]. High Power Laser and Particle Beams, 2013, 25(2): 375-380 doi: 10.3788/HPLPB20132502.0375
|
Zhang C, Wang, Z B, Zhao B, et al. Investigation of radiation flux in certain band via the preheat of aluminum sample[J]. Physics of Plasmas, 2013, 20: 122706. doi: 10.1063/1.4844015
|
Zhang C, Liu H, Duan X X, et al. Study of M-band X-ray preheating effect on shock propagation via streaked optical pyrometer system at SG-III prototype lasers[J]. Physics of Plasmas, 2019, 26: 012708. doi: 10.1063/1.5054990
|
Zhang H, Duan X X, Zhang C, et al. Analysis of the intrinsic uncertainties in the laser-driven iron Hügoniot experiment based on the measurement of velocities[J]. Chinese Physics Letters, 2016, 33: 086202. doi: 10.1088/0256-307X/33/8/086202
|
薛全喜, 王哲斌, 江少恩, 等. 整形激光加载的一维准等熵压缩仿真[J]. 强激光与粒子束, 2013, 25(11):2891-2894. (Xue Quanxi, Wang Zhebin, Jiang Shaoen, et al. Simulation of one-dimensional quasi-isentropic compression driven by temporal shaped laser[J]. High Power Laser and Particle Beams, 2013, 25(11): 2891-2894 doi: 10.3788/HPLPB20132511.2891
|
Ng A, Pasini D, Celliers P, et al. Ablation scaling in steady-state ablation dominated by inverse-bremsstrahlung absorption[J]. Applied Physics Letters, 1984, 45(10): 1046-1050. doi: 10.1063/1.95057
|
薛全喜, 江少恩, 王哲斌, 等. 基于神光III原型装置开展的激光直接驱动准等熵压缩研究进展[J]. 物理学报, 2018, 67:045202. (Xue Quanxi, Jiang Shaoen, Wang Zhebin, et al. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG III prototype laser facility[J]. Acta Physica Sinica, 2018, 67: 045202 doi: 10.7498/aps.67.20172159
|
Xue Q X, Jiang S E, Wang Z B, et al. X-ray preheat shield in laser direct-drive ramp compression experiments[J]. AIP Advances, 2019, 9: 035007. doi: 10.1063/1.5053226
|