Volume 32 Issue 12
Nov.  2020
Turn off MathJax
Article Contents
Chu Qiuhui, Guo Chao, Yan Donglin, et al. Recent progress of high power narrow linewidth fiber laser[J]. High Power Laser and Particle Beams, 2020, 32: 121004. doi: 10.11884/HPLPB202032.200144
Citation: Chu Qiuhui, Guo Chao, Yan Donglin, et al. Recent progress of high power narrow linewidth fiber laser[J]. High Power Laser and Particle Beams, 2020, 32: 121004. doi: 10.11884/HPLPB202032.200144

Recent progress of high power narrow linewidth fiber laser

doi: 10.11884/HPLPB202032.200144
  • Received Date: 2020-05-26
  • Rev Recd Date: 2020-10-19
  • Publish Date: 2020-11-19
  • In recent years, fiber laser has been developing rapidly, and gradually applied in many fields. Further improvement of output power is still the research hotspot of fiber laser. Beam combining is an important method to scale output power of fiber laser. Beam combining requires that the sub beam is a narrow linewidth fiber laser, so the research of narrow linewidth fiber laser is of great significance for power improvement. In this paper, the development and research status of narrow linewidth high power fiber lasers are introduced in detail, and based on the current research status, the future development trend is prospected.
  • loading
  • [1]
    Shi Wei, Fang Qiang, Zhu Xiushan, et al. Fiber lasers and their applications[J]. Applied Optics, 2014, 53(28): 6554-6558. doi: 10.1364/AO.53.006554
    [2]
    Qu Zhou, Li Qiushi, Meng Hailong, et al. Application and the key technology on high-power fiber-optic laser in laser weapon[C]//Proc of SPIE. 2014: 92940C.
    [3]
    Naeem M. Advances in drilling with fiber lasers[C]//Industrial Laser Applications Symposium. 2015.
    [4]
    Tony H. Laser marking with fiber lasers[J]. Industrial Laser Solutions, 2012, 27(5): 7.
    [5]
    Clery D. Laser fusion, with a difference [J]. Science, 2015, 347(6218):111-112.
    [6]
    Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279
    [7]
    Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//Conference on Lasers and Electro-Optics. 2013.
    [8]
    Lin Honghuan, Xu Lixin, Li Chengyu, et al. 10.6 kW high-brightness cascade-end-pumped monolithic fiber lasers directly pumped by laser diodes in step-index large mode area double cladding fiber[J]. Results in Physics, 2019, 14: 102479. doi: 10.1016/j.rinp.2019.102479
    [9]
    Lin Aoxiang, Zhan Huan, Peng Kun, et al. 10 kW-level pump-gain integrated functional laser fiber[C]//Asia Communications and Photonics Conference. 2018.
    [10]
    Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [11]
    Zhu Jiajian, Zhou Pu, Ma Yanxing, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19: 18645-18654. doi: 10.1364/OE.19.018645
    [12]
    Otto H J, Jauregui C, Limpert J, et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[C]//Proc of SPIE. 2016:97280E.
    [13]
    Liu Zejin, Zhou Pu, Xu Xiaojun, et al. Coherent beam combining of high power fiber lasers: Progress and prospect[J]. Science China (Technological Sciences), 2013, 56(7): 1597-1606. doi: 10.1007/s11431-013-5260-z
    [14]
    Madasamy P, Thomas A, Loftus T, et al. Comparison of spectral beam combining approaches for high power fiber laser systems[C]//Proc of SPIE. 2008: 695207.
    [15]
    蒲世兵, 姜宗福, 许晓军. 基于体布拉格光栅的光谱合成的数值分析[J]. 强激光与粒子束, 2008, 20(5):721-724. (Pu Shibing, Jiang Zongfu, Xu Xiaojun. Numerical analysis of spectral beam combining by volume Bragg grating[J]. High Power Laser and Particle Beams, 2008, 20(5): 721-724
    [16]
    姜曼, 马鹏飞, 周朴, 等. 基于多层电介质光栅光谱合成的光束质量[J]. 物理学报, 2016, 65:104203. (Jiang Man, Ma Pengfei, Zhou Pu, et al. Beam quality in spectral beam combination based on multi-layer dielectric grating[J]. Acta Physica Sinica, 2016, 65: 104203 doi: 10.7498/aps.65.104203
    [17]
    Tian Fei, Yan Hong, Chen Li, et al. Investigation on the influence of spectral linewidth broadening on beam quality in spectral beam combination[C]//Proc of SPIE. 2015:92553N.
    [18]
    Doruk E, Lu W, Akbulut M, et al. 1 kW CW Yb-fiber-amplifier with<0.5 GHz linewidth and near-diffraction limited beam-quality for coherent combining application[C]//Proc of SPIE. 2011: 791407.
    [19]
    Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier[J]. Optics Express, 2016, 24(6): 6011-6020. doi: 10.1364/OE.24.006011
    [20]
    Liem A, Tünnermann A, Sattler B, et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier[J]. Optics Express, 2017, 25(13): 14892-14899. doi: 10.1364/OE.25.014892
    [21]
    Yu C X, Shatrovoy O, Fan T Y, et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier[J]. Optics Letters, 2016, 41(22): 5202-5205. doi: 10.1364/OL.41.005202
    [22]
    王小林, 周朴, 肖虎, 等. 窄线宽全光纤激光器实现666 W高功率输出[J]. 强激光与粒子束, 2012, 24(6):1261-1262. (Wang Xiaolin, Zhou Pu, Xiao Hu, et al. Narrow linewidth all-fiber laser with 666 W power output[J]. High Power Laser and Particle Beams, 2012, 24(6): 1261-1262 doi: 10.3788/HPLPB20122406.1261
    [23]
    Ran Yang, Tao Rumao, Ma Pengfei, et al. 560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality[J]. Applied Optics, 2015, 54(24): 7258-7263. doi: 10.1364/AO.54.007258
    [24]
    张利明, 周寿桓, 赵鸿, 等. 780 W全光纤窄线宽光纤激光器[J]. 物理学报, 2014, 63:134205. (Zhang Liming, Zhou Shouhuan, Zhao Hong, et al. 780 W narrow linewidth all fiber laser[J]. Acta Physica Sinica, 2014, 63: 134205 doi: 10.7498/aps.63.134205
    [25]
    Naderi N A, Flores A, Anderson B M, et al. Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition[J]. Optics Letters, 2016, 41(17): 3964-3967. doi: 10.1364/OL.41.003964
    [26]
    Dajani I, Flores A, Ehrenreich T. Multi-kilowatt power scaling and coherent beam combining of narrow-linewidth fiber lasers [C]//Proc fo SPIE. 2016: 972801.
    [27]
    Flores A, Robin C, Lanari A, et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers[J]. Optics Express, 2014, 22(15): 17735-17744. doi: 10.1364/OE.22.017735
    [28]
    Jun C, Jung M, Shin W, et al. 818 W Yb-doped amplifier with < 7 GHz linewidth based on pseudo-random phase modulation in polarization-maintained all-fiber configuration[J]. Laser Physics Letters, 2019, 16: 015102. doi: 10.1088/1612-202X/aaee11
    [29]
    Liu Meizhong, Yang Yifeng, Shen Hui, et al. 1.27 kW, 2.2 GHz pseudo random binary sequence phase modulated fiber amplifier with Brillouin gain spectrum overlap[J]. Scientific Reports, 2020, 10: 629. doi: 10.1038/s41598-019-57408-5
    [30]
    Huang Zhihua, Liang Xiaobao, Li Chengyu, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators[J]. Applied Optics, 2016, 55(2): 297-302. doi: 10.1364/AO.55.000297
    [31]
    Huang Yusheng, Yan Ping, Wang Zehui, et al. 2.19 kW narrow linewidth FBG-based MOPA configuration fiber laser[J]. Optics Express, 2019, 27(3): 3136-3145. doi: 10.1364/OE.27.003136
    [32]
    Junsu L, Kwang H L, Hwanseong J, et al. 2.05 kW all-fiber high-beam-quality fiber amplifier with stimulated Brillouin scattering suppression incorporating a narrow-linewidth fiber-Bragg-grating-stabilized laser diode seed source[J]. Applied Optics, 2019, 58(23): 6251-6256. doi: 10.1364/AO.58.006251
    [33]
    王岩山, 王珏, 常哲, 等. 基于简单MOPA结构实现3.08 kW全光纤窄线宽线偏振激光输出[J]. 强激光与粒子束, 2020, 32:011006. (Wang Yanshan, Wang Jue, Chang Zhe, et al. Output of 3.08 kW narrow linewidth linearly polarized all-fiber laser based on a simple MOPA structure[J]. High Power Laser and Particle Beams, 2020, 32: 011006 doi: 10.11884/HPLPB202032.200004
    [34]
    Platonov N, Yagodkin R, Cruz J, et al. 1.5 kW linear polarized on PM fiber and 2 kW on non-PM fiber narrow linewidth CW diffraction-limited fiber amplifier [C]//Proc of SPIE. 2017: 100850M.
    [35]
    Nikolai P, Roman Y, Joel D L C, et al. Up to 2.5 kW on non-PM fiber and 2.0 kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format[C]//Proc of SPIE. 2018: 105120E.
    [36]
    Kanskar M, Zhang J, Kaponen J, et al. Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications[C]//Proc of SPIE. 2018: 2291253.
    [37]
    Ma Pengfei, Tao Rumao, Su Rongtao, et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4): 4187-4195. doi: 10.1364/OE.24.004187
    [38]
    Su Rongtao, Tao Rumao, Wang Xiaolin, et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Physics Letters, 2017, 14: 085102. doi: 10.1088/1612-202X/aa760b
    [39]
    Qi Yunfeng, Lei Ming, Liu Chi, et al. 1.75 kW CW narrow linewidth Yb-doped all-fiber amplifiers for beam combining application[C]//Conference on Lasers andElectro-Optics. 2015: ATu4M.4.
    [40]
    Qi Yunfeng, Yang Yifeng, Shen Hui, et al. 2.7 kW CW narrow linewidth Yb-doped all-fiber amplifiers for beam combining application [C]//Advanced Solid-State Lasers. 2017: ATu3A.1.
    [41]
    Li Tenglong, Zha Congwen, Sun Yinhong, et al. 3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser[J]. Laser Physics, 2018, 28: 105101. doi: 10.1088/1555-6611/aace37
    [42]
    Chang Zhe, Wang Yanshan, Sun Yinhong, et al. 1.5 kW polarization-maintained Yb-doped amplifier with 13 GHz linewidth by suppressing the self-pulsing and stimulated Brillouin scattering[J]. Applied Optics, 2019, 58(23): 6419. doi: 10.1364/AO.58.006419
    [43]
    王岩山, 马毅, 孙殷宏, 等. 2.62 kW, 30 GHz窄线宽线偏振近衍射极限全光纤激光器[J]. 中国激光, 2019, 46(12):1215001. (Wang Yanshan, Ma Yi, Sun Yinhong, et al. 2.62 kW, 30 GHz linearly polarized all-fiber laser with narrow linewidth and near diffraction limit beam quality[J]. Chinese Journal of Lasers, 2019, 46(12): 1215001 doi: 10.3788/CJL201946.1215001
    [44]
    Ott D, Divliansky I, Anderson B, et al. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating[J]. Optics Express, 2013, 21(24): 29620-29627. doi: 10.1364/OE.21.029620
    [45]
    Andrusyak O, Ciapurin I, Smirnov V, et al. Spectral beam combining of fiber lasers with increased channel density[C]//Proc of SPIE. 2007: 64531L.
    [46]
    Schmidt O, Rekas M, Wirth C, et al. High power narrow-band fiber-based ASE source[J]. Optics Express, 2011, 19: 4421-4427. doi: 10.1364/OE.19.004421
    [47]
    Naderi N A, Dajani I, and Flores A. High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth[J]. Optics Letters, 2016, 41(5): 1018-1021. doi: 10.1364/OL.41.001018
    [48]
    Naderi N A, Flores A, Anderson B M, et al. Kilowatt high-efficiency narrow-linewidth monolithic fiber amplifier operating at 1034 nm[C]// Proc of SPIE. 2016: 972803.
    [49]
    Huang Y, Edgecumbe J, Ding J, et al. Performance of kW class fiber amplifiers spanning a broad range of wavelengths: 1028~1100 nm[C]//Proc of SPIE. 2014:89612K.
    [50]
    Yagodkin R, Platonov N, Yusim A, et al.>1.5 kW narrow linewidth cw diffraction-limited fiber amplifier with 40 nm bandwidth[C]//Proc of SPIE. 2016: 972807.
    [51]
    Moloney J V, Newell A C. Nonlinear optics[J]. Physics D Nonlinear Phenomena, 1990, 44(1): 1-37.
    [52]
    Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224. doi: 10.1364/OE.19.013218
    [53]
    Smith A V, Smith J J. Mode competition in high power fiber amplifiers[J]. Optics Express, 2011, 19(12): 11318-29. doi: 10.1364/OE.19.011318
    [54]
    Hansen K R, Alkeskjold T T, Broeng J, et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Optics Express, 2013, 21(2): 1944-1971. doi: 10.1364/OE.21.001944
    [55]
    Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192. doi: 10.1364/OE.19.010180
    [56]
    Smith J J, Smith A V. Influence of signal bandwidth on mode instability threshold of fiber amplifiers[C]//Proceedings of SPIE. 2014: 93440L.
    [57]
    Otto H J, Stutzki F, Jansen F, et al. Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers[J]. Optics Express, 2012, 20(14): 15710. doi: 10.1364/OE.20.015710
    [58]
    Broderick N G R, Offerhaus H L, Richardson D J, et al. Large mode area fibers for high power applications[J]. Optics Fiber Technology, 1999, 5(2): 185-196. doi: 10.1006/ofte.1998.0292
    [59]
    Shiraki K, Ohashi M, Tated M. Suppression of stimulated brillouin scattering in a fibre by changing the core radius[J]. Electronic Letter, 1995, 31(8): 668-669. doi: 10.1049/el:19950418
    [60]
    Jauregui C, Otto H J, Stutzki F, et al. Passive mitigation strategies for mode instabilities in high-power fiber laser systems[J]. Optics Express, 2013, 21(16): 19375-19386. doi: 10.1364/OE.21.019375
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(2)

    Article views (3016) PDF downloads(520) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return