Citation: | Zhang Xue, Wang Tao, Ni Xinrong, et al. Effects of low energy secondary electrons on breakdown of dielectric window[J]. High Power Laser and Particle Beams, 2020, 32: 103008. doi: 10.11884/HPLPB202032.200170 |
[1] |
Michizono S, Saito Y. Surface discharge and surface potential on alumina RF windows[J]. Vacuum, 2001, 60(1/2): 235-239.
|
[2] |
Michizono S. Secondary electron emission from alumina RF windows[J]. IEEE Trans Dielectrics and Electrical Insulation, 2007, 14(3): 583-592. doi: 10.1109/TDEI.2007.369517
|
[3] |
张雪, 徐强, 王勇, 等. 高功率盒形窗内次级电子倍增效应[J]. 强激光与粒子束, 2016, 28:023004. (Zhang Xue, Xu Qiang, Wang Yong, et al. Secondary electron multiplier effect in high power box window[J]. High Power Laser and Particle Beams, 2016, 28: 023004 doi: 10.11884/HPLPB201628.023004
|
[4] |
范壮壮, 王洪广, 林舒, 等. 高功率微波介质窗表面电子倍增二维粒子模拟[J]. 强激光与粒子束, 2014, 26:063012. (Fan Zhuangzhuang, Wang Hongguang, Lin Shu, et al. High power microwave dielectric window surface electron multiplication two-dimensional particle simulation[J]. High Power Laser and Particle Beams, 2014, 26: 063012 doi: 10.11884/HPLPB201426.063012
|
[5] |
董烨, 董志伟, 周前红, 等. 两种外磁场形式对介质面次级电子倍增的抑制[J]. 强激光与粒子束, 2013, 25(10):2653-2658. (Dong Ye, Dong Zhiwei, Zhou Qianhong, et al. Inhibition of secondary electron multiplication on the dielectric surface by two external magnetic field forms[J]. High Power Laser and Particle Beams, 2013, 25(10): 2653-2658 doi: 10.3788/HPLPB20132510.2653
|
[6] |
Vaughan J R M. A new formula for secondary emission yield[J]. IEEE Trans Electron Devices, 1989, 36(9): 1963-1967. doi: 10.1109/16.34278
|
[7] |
Vaughan R. Secondary emission formulas[J]. IEEE Trans Electron Devices, 1993, 40(4): 830-833.
|
[8] |
Cimino R, Collins I R, Furman M A, et al. Can low-energy electrons affect high-energy physics accelerators?[J]. Phys Rev Lett, 2004, 93: 014801. doi: 10.1103/PhysRevLett.93.014801
|
[9] |
Vicente C, Mattes M, Wolk D, et al. Multipactor breakdown prediction in rectangular waveguide-based components[C]//IEEE MTT-S International Microwave Symposium Digest. 2005.
|
[10] |
Furman M A, Pivi M T F. Probabilistic model for the simulation of secondary electron emission[J]. Physical Review Special Topics—Accelerators and Beams, 2002, 5: 124404. doi: 10.1103/PhysRevSTAB.5.124404
|
[11] |
Rice S A, Verboncoeur J P. A comparison of multipactor predictions using two popular secondary electron models[J]. IEEE Trans Plasma Science, 2014, 42(6): 1484-1487. doi: 10.1109/TPS.2014.2321118
|
[12] |
Victor E H. Fast, accurate secondary-electron yield measurements at low primary energies[J]. Review of Scientific Instruments, 1973, 44(4): 456-462. doi: 10.1063/1.1686155
|
[13] |
Seviour R. The role of elastic and inelastic electron reflflection in multipactor discharges[J]. IEEE Trans Electron Devices, 2005, 52(8): 1927-1930. doi: 10.1109/TED.2005.851854
|
[14] |
彭凯, 李晶, 张颖军. 考虑低能电子影响的二次电子修正模型[J]. 中国空间科学技术, 2017, 37(2):32-38. (Peng Kai, Li Jing, Zhang Yingjun. A modified model for the emission of secondary electrons by low-energy electron impact[J]. Chinese Space Science and Technology, 2017, 37(2): 32-38
|
[15] |
Semenov V E, Rakova E I, Anderson D, et al. Importance of reflection of low-energy electrons on multipactor susceptibility diagrams for narrow gaps[J]. IEEE Trans Plasma Science, 2009, 37(9): 1774-1781. doi: 10.1109/TPS.2009.2026754
|
[16] |
Kishek R A, Lau Y Y. Multipactor discharge on a dielectric[J]. Phys Rev Lett, 1998, 80(1): 193-196. doi: 10.1103/PhysRevLett.80.193
|
[17] |
Zhang X, Chang C, Gimeno B. Multipactor analysis in circular waveguides excited by TM01 mode[J]. IEEE Trans Electron Devices, 2019, 66(11): 4943-4951. doi: 10.1109/TED.2019.2941594
|
[18] |
Semenov V, Nechaev V, Rakova E, et al. Multiphase regimes of single-surface multipactor[J]. Physics of Plasmas, 2005, 12: 073508. doi: 10.1063/1.1982138
|