Volume 32 Issue 10
Sep.  2020
Turn off MathJax
Article Contents
Zhang Xue, Wang Tao, Ni Xinrong, et al. Effects of low energy secondary electrons on breakdown of dielectric window[J]. High Power Laser and Particle Beams, 2020, 32: 103008. doi: 10.11884/HPLPB202032.200170
Citation: Zhang Xue, Wang Tao, Ni Xinrong, et al. Effects of low energy secondary electrons on breakdown of dielectric window[J]. High Power Laser and Particle Beams, 2020, 32: 103008. doi: 10.11884/HPLPB202032.200170

Effects of low energy secondary electrons on breakdown of dielectric window

doi: 10.11884/HPLPB202032.200170
  • Received Date: 2020-06-18
  • Rev Recd Date: 2020-08-20
  • Publish Date: 2020-09-29
  • In the multipactor investigation of dielectric window, the effect of low energy electron is usually neglected. In this paper, a homemade Monte Carlo model was developed to simulate the multipactor mechanism of the RF window. By comparing the multipactor susceptibility curves obtained under the classical Vaughan secondary electron emission model and two modified Vaughan models (fitted by Rice and Vincent respectively), the influence of low-energy electrons on the multipactor effect of the dielectric window was obtained. The simulation results demonstrate that under effect of the tangential electric field, the susceptibility curves obtained by the three emission models almost overlap. Low-energy electrons have little effect on the susceptibility curves, and the Rice model has the largest discharge region. In comparison, under effect of the normal electric field, the susceptibility area fitted by the Vincent model is much larger than the other two models. These characteristics should be taken into account in the research on the breakdown phenomenon of high-power dielectric window and breakdown suppression technology.
  • loading
  • [1]
    Michizono S, Saito Y. Surface discharge and surface potential on alumina RF windows[J]. Vacuum, 2001, 60(1/2): 235-239.
    [2]
    Michizono S. Secondary electron emission from alumina RF windows[J]. IEEE Trans Dielectrics and Electrical Insulation, 2007, 14(3): 583-592. doi: 10.1109/TDEI.2007.369517
    [3]
    张雪, 徐强, 王勇, 等. 高功率盒形窗内次级电子倍增效应[J]. 强激光与粒子束, 2016, 28:023004. (Zhang Xue, Xu Qiang, Wang Yong, et al. Secondary electron multiplier effect in high power box window[J]. High Power Laser and Particle Beams, 2016, 28: 023004 doi: 10.11884/HPLPB201628.023004
    [4]
    范壮壮, 王洪广, 林舒, 等. 高功率微波介质窗表面电子倍增二维粒子模拟[J]. 强激光与粒子束, 2014, 26:063012. (Fan Zhuangzhuang, Wang Hongguang, Lin Shu, et al. High power microwave dielectric window surface electron multiplication two-dimensional particle simulation[J]. High Power Laser and Particle Beams, 2014, 26: 063012 doi: 10.11884/HPLPB201426.063012
    [5]
    董烨, 董志伟, 周前红, 等. 两种外磁场形式对介质面次级电子倍增的抑制[J]. 强激光与粒子束, 2013, 25(10):2653-2658. (Dong Ye, Dong Zhiwei, Zhou Qianhong, et al. Inhibition of secondary electron multiplication on the dielectric surface by two external magnetic field forms[J]. High Power Laser and Particle Beams, 2013, 25(10): 2653-2658 doi: 10.3788/HPLPB20132510.2653
    [6]
    Vaughan J R M. A new formula for secondary emission yield[J]. IEEE Trans Electron Devices, 1989, 36(9): 1963-1967. doi: 10.1109/16.34278
    [7]
    Vaughan R. Secondary emission formulas[J]. IEEE Trans Electron Devices, 1993, 40(4): 830-833.
    [8]
    Cimino R, Collins I R, Furman M A, et al. Can low-energy electrons affect high-energy physics accelerators?[J]. Phys Rev Lett, 2004, 93: 014801. doi: 10.1103/PhysRevLett.93.014801
    [9]
    Vicente C, Mattes M, Wolk D, et al. Multipactor breakdown prediction in rectangular waveguide-based components[C]//IEEE MTT-S International Microwave Symposium Digest. 2005.
    [10]
    Furman M A, Pivi M T F. Probabilistic model for the simulation of secondary electron emission[J]. Physical Review Special Topics—Accelerators and Beams, 2002, 5: 124404. doi: 10.1103/PhysRevSTAB.5.124404
    [11]
    Rice S A, Verboncoeur J P. A comparison of multipactor predictions using two popular secondary electron models[J]. IEEE Trans Plasma Science, 2014, 42(6): 1484-1487. doi: 10.1109/TPS.2014.2321118
    [12]
    Victor E H. Fast, accurate secondary-electron yield measurements at low primary energies[J]. Review of Scientific Instruments, 1973, 44(4): 456-462. doi: 10.1063/1.1686155
    [13]
    Seviour R. The role of elastic and inelastic electron reflflection in multipactor discharges[J]. IEEE Trans Electron Devices, 2005, 52(8): 1927-1930. doi: 10.1109/TED.2005.851854
    [14]
    彭凯, 李晶, 张颖军. 考虑低能电子影响的二次电子修正模型[J]. 中国空间科学技术, 2017, 37(2):32-38. (Peng Kai, Li Jing, Zhang Yingjun. A modified model for the emission of secondary electrons by low-energy electron impact[J]. Chinese Space Science and Technology, 2017, 37(2): 32-38
    [15]
    Semenov V E, Rakova E I, Anderson D, et al. Importance of reflection of low-energy electrons on multipactor susceptibility diagrams for narrow gaps[J]. IEEE Trans Plasma Science, 2009, 37(9): 1774-1781. doi: 10.1109/TPS.2009.2026754
    [16]
    Kishek R A, Lau Y Y. Multipactor discharge on a dielectric[J]. Phys Rev Lett, 1998, 80(1): 193-196. doi: 10.1103/PhysRevLett.80.193
    [17]
    Zhang X, Chang C, Gimeno B. Multipactor analysis in circular waveguides excited by TM01 mode[J]. IEEE Trans Electron Devices, 2019, 66(11): 4943-4951. doi: 10.1109/TED.2019.2941594
    [18]
    Semenov V, Nechaev V, Rakova E, et al. Multiphase regimes of single-surface multipactor[J]. Physics of Plasmas, 2005, 12: 073508. doi: 10.1063/1.1982138
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (1104) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return