Volume 32 Issue 10
Sep.  2020
Turn off MathJax
Article Contents
He Hu, Ge Yi, Yuan Huan, et al. A comparison of phase between a nonlinear theory and 2D particle in cell simulation in three-cavity klystrons[J]. High Power Laser and Particle Beams, 2020, 32: 103010. doi: 10.11884/HPLPB202032.200171
Citation: He Hu, Ge Yi, Yuan Huan, et al. A comparison of phase between a nonlinear theory and 2D particle in cell simulation in three-cavity klystrons[J]. High Power Laser and Particle Beams, 2020, 32: 103010. doi: 10.11884/HPLPB202032.200171

A comparison of phase between a nonlinear theory and 2D particle in cell simulation in three-cavity klystrons

doi: 10.11884/HPLPB202032.200171
  • Received Date: 2020-06-21
  • Rev Recd Date: 2020-09-05
  • Publish Date: 2020-09-29
  • This paper applies the theory of kinematics and space charge wave to conclude an experiential formula for calculating the phase of the modulated current at the entrance of the gap of the middle cavity. It also applies a nonlinear theory of cavity excitation by modulated electron beam to calculate the amplitude and the phase of the gap voltage of the middle cavity and the output cavity, and presents an experimential formula for calculating the phase of the modulated current at the entrance of the gap of the output cavity. With these theories and 2D PIC, it estimates the phase of the modulated current at the entrance of the gap of the middle cavity and the output cavity as well as the amplitude and the phase of gap voltage in the middle cavity and the output cavity. The errors of the phase of the modulated current at the entrance of the gap of the middle cavity and the output cavity are 2.627° (model 1) and 3.857° (model 2); the relativistic errors of the amplitude of gap voltage in the middle cavity and the output cavity are 1.47% and 5.42%, the error of the phase of gap voltage in the middle cavity are 4.017° (model 2) and 5.427° (model 3), and the error of the phase of gap voltage in the output cavity is 12.32°. Finally, the paper analyzes the phase of the modulated current versus the propagation distance in three models by 2D PIC simulation.
  • loading
  • [1]
    Friedman M, Krall J, Lau Y Y, et al. Externally modulated intense relativistic electron beams[J]. J Appl Phys, 1994, 64(7): 3353-3379.
    [2]
    Uhm H S. A self-consistent nonlinear theory of current modulation in relativistic klystron amplifier[J]. Phys Fluids B, 1993, 5(1): 190-200. doi: 10.1063/1.860852
    [3]
    Uhm H S, Park G S, Armstrong C M. A theory of cavity excitation by modulated electron beam in connection with application to a klystron amplifier[J]. Phys Fluids B, 1993, 5(4): 1349-1357. doi: 10.1063/1.860924
    [4]
    Uhm H S. Nonlinear mode evolution of current modulation in relativistic klystron amplifiers[C]//Proc of SPIE. 1993, 1872: 35-46.
    [5]
    Uhm H S. A theoretical analysis of relativistic klystron oscillators[J]. IEEE Trans Plasma Sci, 1994, 22(5): 706-712. doi: 10.1109/27.338286
    [6]
    Brandt H E. Current modulation in relativistic klystron amplifiers[J]. IEEE Trans Plasma Sci, 1996, 24(3): 924-927. doi: 10.1109/27.533096
    [7]
    Liu Zhenbang, Huang Hua, Lei Lurong, et al. Investigation of an X-band gigawatt long pulse multibeam relativistic klystron amplifier[J]. Physics of Plasmas, 2015, 22: 093105. doi: 10.1063/1.4929920
    [8]
    Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of the phase stability of an X-band long pulse multibeam relativistic klystron amplifier[J]. Physics of Plasmas, 2016, 23: 093110. doi: 10.1063/1.4962760
    [9]
    Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of an X-band long pulse high-power high-gain coaxial multibeam relativistic klystron amplifier[J]. IEEE Trans Electron Devices, 2018, 66(1): 722-728.
    [10]
    杨振萍, 边清泉. 相对论速调管放大器中微波的相位抖动研究[J]. 物理学报, 2009, 58(9):6141-6145. (Yang Zhenping, Bian Qingquan. Investigation of RF phase jitter in relativistic klystron amplifier[J]. Acta Physica Sinica, 2009, 58(9): 6141-6145
    [11]
    何琥, 黄华, 雷禄容. 相对论速调管放大器一维非线性理论的数值分析[J]. 强激光与粒子束, 2014, 26:063005. (He Hu, Huang Hua, Lei Lurong. A self-consistent nonlinear theory of current modulation in relativistic klystron amplifiers[J]. High Power Laser and Particle Beams, 2014, 26: 063005 doi: 10.3788/HPLPB20142606.63005
    [12]
    何琥, 黄华, 雷禄容. 相对论速调管放大器中自洽的非线性理论与粒子模拟的比较[J]. 强激光与粒子束, 2016, 28:113006. (He Hu, Huang Hua, Lei Lurong. Comparison between self-consistent nonlinear theory and particle simulation of current modulation in relativistic klystron amplifiers[J]. High Power Laser and Particle Beams, 2016, 28: 113006 doi: 10.11884/HPLPB201628.160165
    [13]
    何琥, 袁欢, 黄华. 相对论速调管放大器两腔束流调制的理论与模拟比较分析[J]. 强激光与粒子束, 2018, 30:053009. (He Hu, Yuan Huan, Huang Hua. A comparison between a self-consistent nonlinear theory of current modulation and 2D particle in cell simulation in two-cavity RKA[J]. High Power Laser and Particle Beams, 2018, 30: 053009 doi: 10.11884/HPLPB201830.170375
    [14]
    何琥, 刘振帮, 黄华. 多注RKA束流调制的理论与模拟比较分析[J]. 强激光与粒子束, 2019, 31:013001. (He Hu, Liu Zhenbang, Huang Hua. Comparison between self-consistent nonlinear theory of current modulation and three-dimensional particle-in-cell simulation in multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 013001 doi: 10.11884/HPLPB201931.180095
    [15]
    吴洋. 强流高增益相对论速调管放大器理论和实验研究[D]. 北京: 清华大学, 2012.

    Wu Yang. Theoretical and experiment study on intense beam high gain relativistic klystron amplifier[D]. Beijing: Tsinghua University, 2012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (1024) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return