He Hu, Ge Yi, Yuan Huan, et al. A comparison of phase between a nonlinear theory and 2D particle in cell simulation in three-cavity klystrons[J]. High Power Laser and Particle Beams, 2020, 32: 103010. doi: 10.11884/HPLPB202032.200171
Citation: He Hu, Ge Yi, Yuan Huan, et al. A comparison of phase between a nonlinear theory and 2D particle in cell simulation in three-cavity klystrons[J]. High Power Laser and Particle Beams, 2020, 32: 103010. doi: 10.11884/HPLPB202032.200171

A comparison of phase between a nonlinear theory and 2D particle in cell simulation in three-cavity klystrons

doi: 10.11884/HPLPB202032.200171
  • Received Date: 2020-06-21
  • Rev Recd Date: 2020-09-05
  • Publish Date: 2020-09-29
  • This paper applies the theory of kinematics and space charge wave to conclude an experiential formula for calculating the phase of the modulated current at the entrance of the gap of the middle cavity. It also applies a nonlinear theory of cavity excitation by modulated electron beam to calculate the amplitude and the phase of the gap voltage of the middle cavity and the output cavity, and presents an experimential formula for calculating the phase of the modulated current at the entrance of the gap of the output cavity. With these theories and 2D PIC, it estimates the phase of the modulated current at the entrance of the gap of the middle cavity and the output cavity as well as the amplitude and the phase of gap voltage in the middle cavity and the output cavity. The errors of the phase of the modulated current at the entrance of the gap of the middle cavity and the output cavity are 2.627° (model 1) and 3.857° (model 2); the relativistic errors of the amplitude of gap voltage in the middle cavity and the output cavity are 1.47% and 5.42%, the error of the phase of gap voltage in the middle cavity are 4.017° (model 2) and 5.427° (model 3), and the error of the phase of gap voltage in the output cavity is 12.32°. Finally, the paper analyzes the phase of the modulated current versus the propagation distance in three models by 2D PIC simulation.
  • [1]
    Friedman M, Krall J, Lau Y Y, et al. Externally modulated intense relativistic electron beams[J]. J Appl Phys, 1994, 64(7): 3353-3379.
    [2]
    Uhm H S. A self-consistent nonlinear theory of current modulation in relativistic klystron amplifier[J]. Phys Fluids B, 1993, 5(1): 190-200. doi: 10.1063/1.860852
    [3]
    Uhm H S, Park G S, Armstrong C M. A theory of cavity excitation by modulated electron beam in connection with application to a klystron amplifier[J]. Phys Fluids B, 1993, 5(4): 1349-1357. doi: 10.1063/1.860924
    [4]
    Uhm H S. Nonlinear mode evolution of current modulation in relativistic klystron amplifiers[C]//Proc of SPIE. 1993, 1872: 35-46.
    [5]
    Uhm H S. A theoretical analysis of relativistic klystron oscillators[J]. IEEE Trans Plasma Sci, 1994, 22(5): 706-712. doi: 10.1109/27.338286
    [6]
    Brandt H E. Current modulation in relativistic klystron amplifiers[J]. IEEE Trans Plasma Sci, 1996, 24(3): 924-927. doi: 10.1109/27.533096
    [7]
    Liu Zhenbang, Huang Hua, Lei Lurong, et al. Investigation of an X-band gigawatt long pulse multibeam relativistic klystron amplifier[J]. Physics of Plasmas, 2015, 22: 093105. doi: 10.1063/1.4929920
    [8]
    Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of the phase stability of an X-band long pulse multibeam relativistic klystron amplifier[J]. Physics of Plasmas, 2016, 23: 093110. doi: 10.1063/1.4962760
    [9]
    Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of an X-band long pulse high-power high-gain coaxial multibeam relativistic klystron amplifier[J]. IEEE Trans Electron Devices, 2018, 66(1): 722-728.
    [10]
    杨振萍, 边清泉. 相对论速调管放大器中微波的相位抖动研究[J]. 物理学报, 2009, 58(9):6141-6145. (Yang Zhenping, Bian Qingquan. Investigation of RF phase jitter in relativistic klystron amplifier[J]. Acta Physica Sinica, 2009, 58(9): 6141-6145
    [11]
    何琥, 黄华, 雷禄容. 相对论速调管放大器一维非线性理论的数值分析[J]. 强激光与粒子束, 2014, 26:063005. (He Hu, Huang Hua, Lei Lurong. A self-consistent nonlinear theory of current modulation in relativistic klystron amplifiers[J]. High Power Laser and Particle Beams, 2014, 26: 063005 doi: 10.3788/HPLPB20142606.63005
    [12]
    何琥, 黄华, 雷禄容. 相对论速调管放大器中自洽的非线性理论与粒子模拟的比较[J]. 强激光与粒子束, 2016, 28:113006. (He Hu, Huang Hua, Lei Lurong. Comparison between self-consistent nonlinear theory and particle simulation of current modulation in relativistic klystron amplifiers[J]. High Power Laser and Particle Beams, 2016, 28: 113006 doi: 10.11884/HPLPB201628.160165
    [13]
    何琥, 袁欢, 黄华. 相对论速调管放大器两腔束流调制的理论与模拟比较分析[J]. 强激光与粒子束, 2018, 30:053009. (He Hu, Yuan Huan, Huang Hua. A comparison between a self-consistent nonlinear theory of current modulation and 2D particle in cell simulation in two-cavity RKA[J]. High Power Laser and Particle Beams, 2018, 30: 053009 doi: 10.11884/HPLPB201830.170375
    [14]
    何琥, 刘振帮, 黄华. 多注RKA束流调制的理论与模拟比较分析[J]. 强激光与粒子束, 2019, 31:013001. (He Hu, Liu Zhenbang, Huang Hua. Comparison between self-consistent nonlinear theory of current modulation and three-dimensional particle-in-cell simulation in multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 013001 doi: 10.11884/HPLPB201931.180095
    [15]
    吴洋. 强流高增益相对论速调管放大器理论和实验研究[D]. 北京: 清华大学, 2012.

    Wu Yang. Theoretical and experiment study on intense beam high gain relativistic klystron amplifier[D]. Beijing: Tsinghua University, 2012
  • Relative Articles

    [1]He Hu, Yuan Huan, Huang Hua. A comparison between a self-consistent nonlinear theory of current modulation and 2D particle in cell simulation in two-cavity RKA[J]. High Power Laser and Particle Beams, 2018, 30(5): 053009. doi: 10.11884/HPLPB201830.170375
    [2]Yuan Huan, Liu Zhenbang, Huang Hua, Meng Fanbao, Chen Changhua. Phase characteristics of X-band multiple beams relativistic klystron driven by intense pulse electron beams[J]. High Power Laser and Particle Beams, 2017, 29(09): 093005. doi: 10.11884/HPLPB201729.170131
    [3]Yuan Huan, Huang Hua, He Hu, Ge Yi, Meng Fanbao, Chen Changhua. Optimization and experimental study of phase characteristics of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2017, 29(11): 113001. doi: 10.11884/HPLPB201729.170133
    [4]Lei Lurong, Huang Hua, He Hu, Liu Zhenbang, Yuan Huan, Huang Jijin. Design of high power span-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28(03): 033018. doi: 10.11884/HPLPB201628.033018
    [5]Lei Lurong, Yuan Huan, Liu Zhenbang, Huang Hua, He Hu, Huang Jijin. Design of broadband relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28(02): 023003. doi: 10.11884/HPLPB201628.023003
    [6]He Hu, Huang Hua, Lei Lurong. A comparison between a self-consistent nonlinear theory and particle simulation of current modulation in relativistic klystron amplifiers[J]. High Power Laser and Particle Beams, 2016, 28(11): 113006. doi: 10.11884/HPLPB201628.160165
    [7]Lei Yanming, Yan Yang, Fu Wenjie. Nonlinear theory and simulation of extended interaction oscillator[J]. High Power Laser and Particle Beams, 2014, 26(07): 073101. doi: 10.11884/HPLPB201426.073101
    [8]Chen Yongdong, Jin Xiao, Li Zhenghong, Wu Yang, Huang Hua. Theoretical design of 3 GW S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2012, 24(09): 2151-2154. doi: 10.3788/HPLPB20122409.2151
    [9]lei lurong, huang hua, luo xiong, he hu. Three dimensional analysis and simulation of wide-aperture input cavities for klystron amplifier[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- .
    [10]gao liang, qian baoliang, ge xingjun, wang yunxing. Theoretical design and particle-in-cell simulation of moderate-energy P-band relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [11]huang hua, he hu, lei lurong, liu zhenbang, jin xiao, wang ganping, guo yanhua. Initial investigation on relativistic klystron amplifier driven by linear transformer driver[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [12]guo jianhua, yu sheng, li hongfu. Nonlinear theory of beam-wave interaction for gyroklystron[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [13]zhang zehai, shu ting, zhang jun, liu jing, bai xianchen. Three dimensional particle-in-cell simulation of L-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [14]lei lurong, huang hua, fan zhikai, luo xiong, he hu. Three-dimensional whole-tube simulation of C-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [15]guo yanhua, huang hua, luo xiong, zhang beizhen. Phase measurement of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2009, 21(05): 0- .
    [16]lei lu-rong, fan zhi-kai, huang hua, he hu. Three dimensional analysis and simulation of input cavity for S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- .
    [17]song wei, liu guo-zhi, lin yu-zheng, shao hao. Particle simulation of S-band inductively-loaded wide-gap cavity relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2008, 20(08): 0- .
    [18]lei lu-rong, fan zhi-kai, huang hua, he hu. Particle simulation of relativistic klystron amplifier double-gap output cavity[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- .
    [19]lei lu-rong, fan zhi-kai, huang hua, he hu, li zheng-hong. Numerical simulations of coaxial output cavity of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- .
    [20]ge cheng-liang, liang zheng, yang zi-qiang. Particle simulation on S-band relativistic two-stream amplifier[J]. High Power Laser and Particle Beams, 2001, 13(06): 0- .
  • Cited by

    Periodical cited type(1)

    1. 何琥,李士锋,刘振帮. 速调管放大器输入腔的匹配理论和模拟研究. 强激光与粒子束. 2024(10): 40-47 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.3 %FULLTEXT: 20.3 %META: 76.9 %META: 76.9 %PDF: 2.9 %PDF: 2.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.7 %其他: 2.7 %其他: 0.3 %其他: 0.3 %China: 1.2 %China: 1.2 %India: 0.1 %India: 0.1 %Russian Federation: 0.3 %Russian Federation: 0.3 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %Turkey: 0.1 %Turkey: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.1 %[]: 0.1 %上海: 1.9 %上海: 1.9 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %保定: 0.1 %保定: 0.1 %内江: 0.1 %内江: 0.1 %北京: 20.3 %北京: 20.3 %南京: 0.4 %南京: 0.4 %南里奥格兰德州: 0.2 %南里奥格兰德州: 0.2 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %台州: 0.4 %台州: 0.4 %合肥: 0.1 %合肥: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %圣保罗: 0.3 %圣保罗: 0.3 %大连: 0.1 %大连: 0.1 %天津: 0.1 %天津: 0.1 %宣城: 0.2 %宣城: 0.2 %广州: 0.1 %广州: 0.1 %开封: 0.1 %开封: 0.1 %弗吉尼亚州: 0.1 %弗吉尼亚州: 0.1 %张家口: 0.4 %张家口: 0.4 %成都: 0.4 %成都: 0.4 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.8 %杭州: 0.8 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %湖州: 0.2 %湖州: 0.2 %漯河: 0.1 %漯河: 0.1 %烟台: 0.1 %烟台: 0.1 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 13.7 %芒廷维尤: 13.7 %芝加哥: 0.1 %芝加哥: 0.1 %莫斯科: 0.6 %莫斯科: 0.6 %衢州: 0.6 %衢州: 0.6 %西宁: 47.5 %西宁: 47.5 %西安: 0.4 %西安: 0.4 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.4 %运城: 1.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.7 %郑州: 0.7 %重庆: 0.3 %重庆: 0.3 %长春: 0.1 %长春: 0.1 %长沙: 0.6 %长沙: 0.6 %长治: 0.1 %长治: 0.1 %其他其他ChinaIndiaRussian FederationTaiwan, ChinaTurkeyUnited States[]上海东莞中山临汾丹东保定内江北京南京南里奥格兰德州博阿努瓦台州合肥哥伦布圣保罗大连天津宣城广州开封弗吉尼亚州张家口成都昆明晋城普洱杭州武汉沈阳济南深圳湖州漯河烟台福州秦皇岛绵阳芒廷维尤芝加哥莫斯科衢州西宁西安贵阳运城邯郸郑州重庆长春长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (1065) PDF downloads(40) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return