Citation: | He Hu, Ge Yi, Yuan Huan, et al. A comparison of phase between a nonlinear theory and 2D particle in cell simulation in three-cavity klystrons[J]. High Power Laser and Particle Beams, 2020, 32: 103010. doi: 10.11884/HPLPB202032.200171 |
[1] |
Friedman M, Krall J, Lau Y Y, et al. Externally modulated intense relativistic electron beams[J]. J Appl Phys, 1994, 64(7): 3353-3379.
|
[2] |
Uhm H S. A self-consistent nonlinear theory of current modulation in relativistic klystron amplifier[J]. Phys Fluids B, 1993, 5(1): 190-200. doi: 10.1063/1.860852
|
[3] |
Uhm H S, Park G S, Armstrong C M. A theory of cavity excitation by modulated electron beam in connection with application to a klystron amplifier[J]. Phys Fluids B, 1993, 5(4): 1349-1357. doi: 10.1063/1.860924
|
[4] |
Uhm H S. Nonlinear mode evolution of current modulation in relativistic klystron amplifiers[C]//Proc of SPIE. 1993, 1872: 35-46.
|
[5] |
Uhm H S. A theoretical analysis of relativistic klystron oscillators[J]. IEEE Trans Plasma Sci, 1994, 22(5): 706-712. doi: 10.1109/27.338286
|
[6] |
Brandt H E. Current modulation in relativistic klystron amplifiers[J]. IEEE Trans Plasma Sci, 1996, 24(3): 924-927. doi: 10.1109/27.533096
|
[7] |
Liu Zhenbang, Huang Hua, Lei Lurong, et al. Investigation of an X-band gigawatt long pulse multibeam relativistic klystron amplifier[J]. Physics of Plasmas, 2015, 22: 093105. doi: 10.1063/1.4929920
|
[8] |
Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of the phase stability of an X-band long pulse multibeam relativistic klystron amplifier[J]. Physics of Plasmas, 2016, 23: 093110. doi: 10.1063/1.4962760
|
[9] |
Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of an X-band long pulse high-power high-gain coaxial multibeam relativistic klystron amplifier[J]. IEEE Trans Electron Devices, 2018, 66(1): 722-728.
|
[10] |
杨振萍, 边清泉. 相对论速调管放大器中微波的相位抖动研究[J]. 物理学报, 2009, 58(9):6141-6145. (Yang Zhenping, Bian Qingquan. Investigation of RF phase jitter in relativistic klystron amplifier[J]. Acta Physica Sinica, 2009, 58(9): 6141-6145
|
[11] |
何琥, 黄华, 雷禄容. 相对论速调管放大器一维非线性理论的数值分析[J]. 强激光与粒子束, 2014, 26:063005. (He Hu, Huang Hua, Lei Lurong. A self-consistent nonlinear theory of current modulation in relativistic klystron amplifiers[J]. High Power Laser and Particle Beams, 2014, 26: 063005 doi: 10.3788/HPLPB20142606.63005
|
[12] |
何琥, 黄华, 雷禄容. 相对论速调管放大器中自洽的非线性理论与粒子模拟的比较[J]. 强激光与粒子束, 2016, 28:113006. (He Hu, Huang Hua, Lei Lurong. Comparison between self-consistent nonlinear theory and particle simulation of current modulation in relativistic klystron amplifiers[J]. High Power Laser and Particle Beams, 2016, 28: 113006 doi: 10.11884/HPLPB201628.160165
|
[13] |
何琥, 袁欢, 黄华. 相对论速调管放大器两腔束流调制的理论与模拟比较分析[J]. 强激光与粒子束, 2018, 30:053009. (He Hu, Yuan Huan, Huang Hua. A comparison between a self-consistent nonlinear theory of current modulation and 2D particle in cell simulation in two-cavity RKA[J]. High Power Laser and Particle Beams, 2018, 30: 053009 doi: 10.11884/HPLPB201830.170375
|
[14] |
何琥, 刘振帮, 黄华. 多注RKA束流调制的理论与模拟比较分析[J]. 强激光与粒子束, 2019, 31:013001. (He Hu, Liu Zhenbang, Huang Hua. Comparison between self-consistent nonlinear theory of current modulation and three-dimensional particle-in-cell simulation in multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 013001 doi: 10.11884/HPLPB201931.180095
|
[15] |
吴洋. 强流高增益相对论速调管放大器理论和实验研究[D]. 北京: 清华大学, 2012.
Wu Yang. Theoretical and experiment study on intense beam high gain relativistic klystron amplifier[D]. Beijing: Tsinghua University, 2012
|
[1] | He Hu, Yuan Huan, Huang Hua. A comparison between a self-consistent nonlinear theory of current modulation and 2D particle in cell simulation in two-cavity RKA[J]. High Power Laser and Particle Beams, 2018, 30(5): 053009. doi: 10.11884/HPLPB201830.170375 |
[2] | Yuan Huan, Liu Zhenbang, Huang Hua, Meng Fanbao, Chen Changhua. Phase characteristics of X-band multiple beams relativistic klystron driven by intense pulse electron beams[J]. High Power Laser and Particle Beams, 2017, 29(09): 093005. doi: 10.11884/HPLPB201729.170131 |
[3] | Yuan Huan, Huang Hua, He Hu, Ge Yi, Meng Fanbao, Chen Changhua. Optimization and experimental study of phase characteristics of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2017, 29(11): 113001. doi: 10.11884/HPLPB201729.170133 |
[4] | Lei Lurong, Huang Hua, He Hu, Liu Zhenbang, Yuan Huan, Huang Jijin. Design of high power span-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28(03): 033018. doi: 10.11884/HPLPB201628.033018 |
[5] | Lei Lurong, Yuan Huan, Liu Zhenbang, Huang Hua, He Hu, Huang Jijin. Design of broadband relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28(02): 023003. doi: 10.11884/HPLPB201628.023003 |
[6] | He Hu, Huang Hua, Lei Lurong. A comparison between a self-consistent nonlinear theory and particle simulation of current modulation in relativistic klystron amplifiers[J]. High Power Laser and Particle Beams, 2016, 28(11): 113006. doi: 10.11884/HPLPB201628.160165 |
[7] | Lei Yanming, Yan Yang, Fu Wenjie. Nonlinear theory and simulation of extended interaction oscillator[J]. High Power Laser and Particle Beams, 2014, 26(07): 073101. doi: 10.11884/HPLPB201426.073101 |
[8] | Chen Yongdong, Jin Xiao, Li Zhenghong, Wu Yang, Huang Hua. Theoretical design of 3 GW S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2012, 24(09): 2151-2154. doi: 10.3788/HPLPB20122409.2151 |
[9] | lei lurong, huang hua, luo xiong, he hu. Three dimensional analysis and simulation of wide-aperture input cavities for klystron amplifier[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- . |
[10] | gao liang, qian baoliang, ge xingjun, wang yunxing. Theoretical design and particle-in-cell simulation of moderate-energy P-band relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- . |
[11] | huang hua, he hu, lei lurong, liu zhenbang, jin xiao, wang ganping, guo yanhua. Initial investigation on relativistic klystron amplifier driven by linear transformer driver[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- . |
[12] | guo jianhua, yu sheng, li hongfu. Nonlinear theory of beam-wave interaction for gyroklystron[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- . |
[13] | zhang zehai, shu ting, zhang jun, liu jing, bai xianchen. Three dimensional particle-in-cell simulation of L-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- . |
[14] | lei lurong, huang hua, fan zhikai, luo xiong, he hu. Three-dimensional whole-tube simulation of C-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- . |
[15] | guo yanhua, huang hua, luo xiong, zhang beizhen. Phase measurement of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2009, 21(05): 0- . |
[16] | lei lu-rong, fan zhi-kai, huang hua, he hu. Three dimensional analysis and simulation of input cavity for S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- . |
[17] | song wei, liu guo-zhi, lin yu-zheng, shao hao. Particle simulation of S-band inductively-loaded wide-gap cavity relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2008, 20(08): 0- . |
[18] | lei lu-rong, fan zhi-kai, huang hua, he hu. Particle simulation of relativistic klystron amplifier double-gap output cavity[J]. High Power Laser and Particle Beams, 2007, 19(08): 0- . |
[19] | lei lu-rong, fan zhi-kai, huang hua, he hu, li zheng-hong. Numerical simulations of coaxial output cavity of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2006, 18(10): 0- . |
[20] | ge cheng-liang, liang zheng, yang zi-qiang. Particle simulation on S-band relativistic two-stream amplifier[J]. High Power Laser and Particle Beams, 2001, 13(06): 0- . |
1. | 何琥,李士锋,刘振帮. 速调管放大器输入腔的匹配理论和模拟研究. 强激光与粒子束. 2024(10): 40-47 . ![]() |