Volume 32 Issue 9
Aug.  2020
Turn off MathJax
Article Contents
Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001. doi: 10.11884/HPLPB202032.200174
Citation: Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001. doi: 10.11884/HPLPB202032.200174

Development and prospect of laser plasma wakefield accelerator

doi: 10.11884/HPLPB202032.200174
  • Received Date: 2020-05-18
  • Rev Recd Date: 2020-07-26
  • Publish Date: 2020-08-15
  • An ultra-short ultra-intense laser can excite high-amplitude electron plasma waves or so called laser wakefields when it propagates in under-dense gas plasma. A laser wakefield accelerator makes use of such waves to accelerate charged particles (especially electrons and positrons). These plasma waves can sustain longitudinal acceleration fields over three orders of magnitude higher than conventional radio frequency accelerators. This new type of laser-driven plasma-based accelerator opens the way for compact particle accelerators and radiation sources. It also has the potential to be applied for the construction of future ultra-high energy TeV electron-positron colliders and free electron lasers. In this paper, the principle, characteristics and development history of this new accelerator, especially the main progress in the past ten years, the future development trend and the main challenges will be briefly reviewed and introduced.
  • loading
  • [1]
    Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Rev Mod Phys, 2009, 81: 1229-1285. doi: 10.1103/RevModPhys.81.1229
    [2]
    陈民, 盛政明, 马燕云, 等. 台面型电子加速器—激光尾波场加速器[J]. 物理, 2006, 35:1016-1027. (Chen Min, Sheng Zhengming, Ma Yanyun, et al. A tabletop accelerator—The laser wakefield accelerator[J]. Physics, 2006, 35: 1016-1027 doi: 10.3321/j.issn:0379-4148.2006.12.008
    [3]
    Tajima T, Dawson J M. Laser Electron Accelerator[J]. Phys Rev Lett, 1979, 43: 267-270. doi: 10.1103/PhysRevLett.43.267
    [4]
    盛政明, 陈民, 翁苏明, 等. 超短超强激光驱动新型粒子加速器: 机遇和挑战[J]. 物理, 2018, 47(12):753-762. (Sheng Zhenming, Chen Min, Weng Suming, et al. Novel particle accelerators driven by ultrashort and ultraintense lasers: opportunities and challenges[J]. Phyisics, 2018, 47(12): 753-762 doi: 10.7693/wl20181201
    [5]
    陈思富, 黄子平, 石金水. 带电粒子加速器的基本类型及其技术实现[J]. 强激光与粒子束, 2020, 32:045101. (Chen Sifu, Huang Ziping, Shi Jinshui. Basic types and technological implementation of charged particle accelerators[J]. High Power Laser and Particle Beams, 2020, 32: 045101 doi: : 10.11884/HPLPB202032.190424
    [6]
    Esarey E, Sprangle P, Krall J, et al. Overview of plasma-based accelerator concepts[J]. IEEE Trans Plasma Sci, 1996, 24: 252-288. doi: 10.1109/27.509991
    [7]
    Corde S, Phuoc K T, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Rev Mod Phys, 2013, 85: 1-48. doi: 10.1103/RevModPhys.85.1
    [8]
    Leemans W, Esarey E. Laser-driven plasma-wave electron accelerators[J]. Phys Today, 2009, 62: 44.
    [9]
    Schroeder C B, Esarey E, Geddes C G R, et al. Physics considerations for laser-plasma linear colliders[J]. Phys Rev ST-Acce Beams, 2010, 13: 101301. doi: 10.1103/PhysRevSTAB.13.101301
    [10]
    Maier A R, Meseck A, Reiche S, et al. Demonstration scheme for a laser-plasma-driven free-electron laser[J]. Phys Rev X, 2012, 2: 031019.
    [11]
    Nakajima K, Fisher D, Kawakubo T, et al. Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse[J]. Phys Rev Lett, 1995, 74: 4428-4431. doi: 10.1103/PhysRevLett.74.4428
    [12]
    Malka V, Fritzler S, Lefebvre E, et al. Electron Acceleration by a wake field forced by an intense ultrashort laser pulse[J]. Science, 2002, 298: 1596-1600. doi: 10.1126/science.1076782
    [13]
    Mangles S P D, Murphy C D, Najmudin Z, et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 2004, 431: 535-538. doi: 10.1038/nature02939
    [14]
    Geddes C G R, Toth C, van Tilbrg J, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004, 431: 538-541. doi: 10.1038/nature02900
    [15]
    Faure J, Glinec Y, Pukhov A, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431: 541-544. doi: 10.1038/nature02963
    [16]
    Faure J, Rechatin C, Norlin A, et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 2006, 444: 737-739. doi: 10.1038/nature05393
    [17]
    Esarey E, Hubbard R F, Leemans W P, et al. Electron injection into plasma wake fields by colliding laser pulses[J]. Phys Rev Lett, 1997, 79: 2682. doi: 10.1103/PhysRevLett.79.2682
    [18]
    Leemans W P, Nagler B, Gonsalves A J, et al. GeV electron beams from a centimeter-scale accelerator[J]. Nat Phys, 2006, 2: 696-699. doi: 10.1038/nphys418
    [19]
    Osterhoff J, Popp A, Major Z, et al. Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell[J]. Phys Rev Lett, 2008, 101: 085002. doi: 10.1103/PhysRevLett.101.085002
    [20]
    Albert F, Thomas A G R. Applications of laser wakefield accelerator-based light sources[J]. Plasma Phys Contro Fusion, 2016, 58: 103001. doi: 10.1088/0741-3335/58/10/103001
    [21]
    Dawson J M. Particle simulation of plasmas[J]. Rev Mod Phys, 1983, 55: 403. doi: 10.1103/RevModPhys.55.403
    [22]
    Vay J L, Almgren A, Bell J, et al. Warp-X: A new exascale computing platform for beam-plasma simulations[J]. Nuclear Instruments & Methods in Physics Research Section A, 2018, 909: 476.
    [23]
    Fonseca R A, Silva L O, Tsung F S, et al. OSIRIS: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators?[J]. Lecture Notes in Computer Science, 2002, 2331: 342-251.
    [24]
    Yu P, Xu X, Decyk V K, et al. Modeling of laser wakefield acceleration in Lorentz boosted frame using EM-PIC code with spectral solver[J]. J Comput Phys, 2014, 266: 124-138. doi: 10.1016/j.jcp.2014.02.016
    [25]
    Pukhov A, Meyer-ter-Vehn J. Laser wake field acceleration: The highly non-linear broken-wave regime[J]. Appl Phys B, 2002, 74: 355-361.
    [26]
    Gordienko S, Pukhov A. Scaling for ultrarelativistic laser plasmas and quasimonoenergetic electrons[J]. Phys Plasmas, 2005, 12: 043109. doi: 10.1063/1.1884126
    [27]
    Lu W, Huang C, Zhou M, et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime[J]. Phys Rev Lett, 2006, 96: 165002. doi: 10.1103/PhysRevLett.96.165002
    [28]
    Lu W, Tzoufras M, Joshi C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Phys Rev ST-Acce Beams, 2007, 10: 061301. doi: 10.1103/PhysRevSTAB.10.061301
    [29]
    Chen M, Sheng Z M, Ma Y Y, et al. Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases[J]. J Appl Phys, 2006, 99: 056109. doi: 10.1063/1.2179194
    [30]
    Kalmykov S, Yi S A, Khudik V, et al. Electron self-injection and trapping into an evolving plasma bubble[J]. Phys Rev Lett, 2009, 103: 135004. doi: 10.1103/PhysRevLett.103.135004
    [31]
    Davoine X, Lefebvre E, Rechatin C, et al. Cold optical injection producing monoenergetic, multi-GeV electron bunches[J]. Phys Rev Lett, 2009, 102: 065001. doi: 10.1103/PhysRevLett.102.065001
    [32]
    Downer M C, Zgadzaj R, Debus A, et al. Diagnostics for plasma-based electron accelerators[J]. Rev Mod Phys, 2018, 90: 035002. doi: 10.1103/RevModPhys.90.035002
    [33]
    Fuchs M, Weingartner R, Popp A, et al. Laser-driven soft-X-ray undulator source[J]. Nature Phys, 2009, 5: 826. doi: 10.1038/nphys1404
    [34]
    Kneip S, McGuffey C, Martins J L, et al. Bright spatially coherent synchrotron X-rays from a table-top source[J]. Nature Phys, 2010, 6: 980. doi: 10.1038/nphys1789
    [35]
    Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Phys, 2011, 7: 867. doi: 10.1038/nphys2090
    [36]
    Ta Phuoc K, Corde S, Thaury C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6: 308. doi: 10.1038/nphoton.2012.82
    [37]
    Chen S, Powers N D, Ghebregziabher I, et al. MeV-energy X rays from inverse compton scattering with laser-wakefield accelerated electrons[J]. Phys Rev Lett, 2013, 110: 155003. doi: 10.1103/PhysRevLett.110.155003
    [38]
    Yan W, Fruhling C, Golovin G, et al. High-order multiphoton Thomson scattering[J]. Nat Photon, 2017, 11: 514. doi: 10.1038/nphoton.2017.100
    [39]
    Fourmaux S, Corde S, Phuoc K T. Single shot phase contrast imaging using laser-produced Betatron X-ray beams[J]. Optics Letters, 2011, 36: 2426. doi: 10.1364/OL.36.002426
    [40]
    Wenz J, Schleede S, Khrennikov K, et al. Quantitative X-ray phase-contrast microtomography from a compact laser-driven Betatron source[J]. Nature Communications, 2015, 6: 7568. doi: 10.1038/ncomms8568
    [41]
    Doepp A, Hehn L, Goetzfried J, et al. Quick X-ray microtomography using a laser-driven Betatron source[J]. Optica, 2018, 5: 199. doi: 10.1364/OPTICA.5.000199
    [42]
    Cole J M, Symes D R, Lopes N C, et al. High-resolution CT of a mouse embryo using a compact laser-driven X-ray Betatron source[J]. Proc Natl Acad Sci, 2018, 115: 6335-6340. doi: 10.1073/pnas.1802314115
    [43]
    Yabashi M, Tanaka H. The next ten years of X-ray science[J]. Nat Photon, 2017, 11: 12-14. doi: 10.1038/nphoton.2016.251
    [44]
    Guenot D, Gustas D, Vernier A, et al. Relativistic electron beams driven by kHz single-cycle light pulses[J]. Nat Photon, 2017, 11: 293-296. doi: 10.1038/nphoton.2017.46
    [45]
    Nie Z, Pai C H, Hua J, et al. Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure[J]. Nat Photon, 2018, 12: 489-494. doi: 10.1038/s41566-018-0190-8
    [46]
    Zhu X L, Weng S M, Chen M, et al. Efficient generation of relativistic near-single-cycle mid-infrared pulses in plasmas[J]. Light: Science & Applications, 2020, 9: 46.
    [47]
    Zhu X L, Chen M, Weng S M, et al. Single-cycle terawatt twisted-light pulses at midinfrared wavelengths above 10 μm[J]. Phys Rev Appl, 2019, 12: 054024. doi: 10.1103/PhysRevApplied.12.054024
    [48]
    Yu L L, Zhao Y, Qian L J, et al. Plasma optical modulators for intense lasers[J]. Nat Commun, 2016, 7: 11893. doi: 10.1038/ncomms11893
    [49]
    Sheng Z M, Mima K, Zhang J, et al. Emission of electromagnetic pulses from laser wakefields through linear mode conversion[J]. Phys Rev Lett, 2005, 94: 095003. doi: 10.1103/PhysRevLett.94.095003
    [50]
    Liao G Q, Li Y T, Li C, et al. Bursts of terahertz radiation from large-scale plasmas irradiated by relativistic picosecond laser pulses[J]. Phys Rev Lett, 2015, 114: 255001. doi: 10.1103/PhysRevLett.114.255001
    [51]
    Chang W W, Zhang L F, Shao F Q, et al. Laser plasma wave electron accelerators[J]. Acta Physica Sinica, 1991, 40: 182-189. doi: .orp
    [52]
    Chen L M, Kotaki H, Nakajima K, et al. Self-guiding of 100 TW femtosecond laser pulses in centimeter-scale underdense plasma[J]. Phys Plasmas, 2007, 14: 040703. doi: 10.1063/1.2720374
    [53]
    Liu J S, Xia C Q, Wang W T, et al. All-optical cascaded laser wakefield accelerator using ionization-induced injection[J]. Phys Rev Lett, 2011, 107: 035001. doi: 10.1103/PhysRevLett.107.035001
    [54]
    Wang W T, Li W T, Liu J S, et al. high-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control[J]. Phys Rev Lett, 2016, 117: 124801. doi: 10.1103/PhysRevLett.117.124801
    [55]
    Zeng M, Chen M, Yu L L, et al. Multichromatic narrow-energy-spread electron bunches from laser-wakefield acceleration with dual-color lasers[J]. Phys Rev Lett, 2015, 114: 084801. doi: 10.1103/PhysRevLett.114.084801
    [56]
    Mirzaie M, Li S, Zeng M, et al. Demonstration of self-truncated ionization injection for GeV electron beams[J]. Sci Rep, 2015, 5: 14659. doi: 10.1038/srep14659
    [57]
    Li F Y, Sheng Z M, Liu Y, et al. Dense attosecond electron sheets from laser wakefields using an up-ramp density transition[J]. Phys Rev Lett, 2013, 110: 135002. doi: 10.1103/PhysRevLett.110.135002
    [58]
    Zhang C J, Hua J F, Wan Y, et al. Femtosecond probing of plasma wakefields and observation of the plasma wake reversal using a relativistic electron bunch[J]. Phys Rev Lett, 2017, 119: 064801. doi: 10.1103/PhysRevLett.119.064801
    [59]
    Yan W, Chen L, Li D, et al. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble[J]. Proc Natl Acad Sci, 2014, 111: 5825-5830. doi: 10.1073/pnas.1404336111
    [60]
    Vieira J, Mendonca J T. Nonlinear laser driven donut wakefields for positron and electron acceleration[J]. Phys Rev Lett, 2014, 112: 215001. doi: 10.1103/PhysRevLett.112.215001
    [61]
    Chen Y Y, He P L, Shaisultanov R, et al. Polarized positron beams via intense two-color laser pulses[J]. Phys Rev Lett, 2019, 123: 174801. doi: 10.1103/PhysRevLett.123.174801
    [62]
    Wu Y T, Ji L L, Geng X S, et al. Spin filter for polarized electron acceleration in plasma wakefields[J]. Phys Rev Appl, 2020, 13: 044064. doi: 10.1103/PhysRevApplied.13.044064
    [63]
    Sahai A A, Tajima T, Shiltsev V D. Schemes of laser muon acceleration: Ultra-short, micron-scale beams[J]. International Journal of Modern Physics A, 2019, 34: 1943008. doi: 10.1142/S0217751X19430085
    [64]
    Gonsalves A J. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Phys Rev Lett, 2019, 122: 084801. doi: 10.1103/PhysRevLett.122.084801
    [65]
    Steinke S, van Tilborg J, Benedetti C, et al. Multistage coupling of independent laser-plasma accelerators[J]. Nature, 2016, 530: 190-193. doi: 10.1038/nature16525
    [66]
    Luo J, Chen M, Wu W Y, et al. Multistage coupling of laser-wakefield accelerators with curved plasma channels[J]. Phys Rev Lett, 2018, 120: 154801. doi: 10.1103/PhysRevLett.120.154801
    [67]
    Nakajima K. Seamless multistage laser-plasma acceleration toward future high-energy colliders[J]. Light: Science & Applications, 2018, 7: 21.
    [68]
    Zigler A, Bolton M, Ferber Y, et al. Consolidating multiple femtosecond lasers in coupled curved plasma capillaries[J]. Appl Phys Lett, 2018, 113: 183505. doi: 10.1063/1.5046400
    [69]
    Xu X L, Hua J F, Wu Y P, et al. Physics of phase space matching for staging plasma and traditional accelerator components using longitudinally tailored plasma profiles[J]. Phys Rev Lett, 2016, 116: 124801. doi: 10.1103/PhysRevLett.116.124801
    [70]
    Chen M, Luo J, Li F Y, et al. Tunable synchrotron-like radiation from centimeter scale plasma channels[J]. Light: Science & Applications, 2016, 5: e16015.
    [71]
    Doepp A, Mahieu B, Lifschitz A, et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator[J]. Light: Science & Applications, 2017, 6: e17086.
    [72]
    Walker P A, Alesini P D, Alexandrova A S, et al. Horizon 2020 EuPRAXIA design study[J]. Journal of Physics Conference Series, 2017, 874: 012029. doi: 10.1088/1742-6596/874/1/012029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (4160) PDF downloads(591) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return