Volume 32 Issue 12
Nov.  2020
Turn off MathJax
Article Contents
Di Pengcheng, Wang Xiaojun, Wang Rujun, et al. Spectral beam combing in solid-state lasers[J]. High Power Laser and Particle Beams, 2020, 32: 121008. doi: 10.11884/HPLPB202032.200191
Citation: Di Pengcheng, Wang Xiaojun, Wang Rujun, et al. Spectral beam combing in solid-state lasers[J]. High Power Laser and Particle Beams, 2020, 32: 121008. doi: 10.11884/HPLPB202032.200191

Spectral beam combing in solid-state lasers

doi: 10.11884/HPLPB202032.200191
  • Received Date: 2020-07-07
  • Rev Recd Date: 2020-10-29
  • Publish Date: 2020-11-19
  • This paper discusses the technique of the spectral beam combing (SBC) in the solid-state lasers, including the fiber laser, the Yb:YAG slab laser, and the diode laser. For the fiber lasers, we study the beam quality degeneration (BQD) in SBC due to the dispersion of three kinds of diffraction optics elements (DOE): single multi-layer dielectric (MLD) grating, a couple of MLD gratings and multiple volume Bragg gratings (VBG). We point out that, for all cases, BQD is determined by the full-width of the second-order moments instead of the full-width of half maximum in the spectrum of sub-beams. But the value of BQD depends on the DOEs. For solid-state crystal lasers, we demonstrate the feasibility of SBC in the Yb:YAG slab laser by designing an experiment for an intra-cavity SBC employing an MLD grating. The experiment results SBC of seven sub-beams and 241 W laser output, the beam quality after SBC is β≈4.1. It indicates that the output power of the Yb:YAG slab laser can be further scaled by SBC. Finally, we demonstrate a new technique to scale the output power of the laser diodes (LD), which includes the large modal external oscillation in the slow-axis and the SBC in the fast-axis simultaneously. The experiment results the SBC of nine LDs with the slow-axis width of 1 mm, the beam qualities after SBC are β≈6.3 in the slow-axis and β≈1.6 in the fast-axis. It means that beam quality after the SBC in the fast-axis is controllable.
  • loading
  • [1]
    Thielen P A, Ho J G, Burchman D A, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Optics Letters, 2012, 37(18): 3741-3743. doi: 10.1364/OL.37.003741
    [2]
    Bochove E J. Theory of spectral beam combining of fiber lasers[J]. IEEE Journal of Quantum Electronics, 2002, 38(5): 432-445. doi: 10.1109/3.998614
    [3]
    McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 0901008.
    [4]
    Flores A, Dajani I, Holten R, et al. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers[J]. Optical Engineering, 2016, 55: 096101.
    [5]
    Liu Z J, Ma P G, Su R T, et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect[J]. Journal of the Optical Society of America B, 2017, 34(3): A7-14. doi: 10.1364/JOSAB.34.0000A7
    [6]
    Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//Proc of SPIE. 2016: 97300Y.
    [7]
    Madasamy P, Jander D R, Brooks C D, et al. Dual-grating spectral beam combination of high-power fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 337-343. doi: 10.1109/JSTQE.2008.2012266
    [8]
    Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Optics Letters, 2011, 36(16): 3118-3120. doi: 10.1364/OL.36.003118
    [9]
    Andrusyak O, Smirnov V, Venus G, et al. Spectral combining and coherent coupling of lasers by volume Bragg gratings[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 344-353. doi: 10.1109/JSTQE.2009.2012438
    [10]
    Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 487-497. doi: 10.1109/JSTQE.2007.896568
    [11]
    姜曼, 马鹏飞, 周朴, 等. 基于多层电介质光栅光谱合成的光束质量[J]. 物理学报, 2016, 65:104203. (Jiang Man, Ma Pengfei, Zhou Pu, et al. Beam quality in spectral beam combination based on the multi-layer dielectric grating[J]. Acta Physica Sinica, 2016, 65: 104203 doi: 10.7498/aps.65.104203
    [12]
    周泰斗, 梁小宝, 赵磊, 等. 体布拉格光栅色散对衍射光束质量的影响[J]. 中国激光, 2017, 44:0201019. (Zhou Taidou, Liang Xiaobao, Zhao Lei, et al. Effect of dispersion of volume Bragg grating on the quality of diffraction beam[J]. Chinese Journal of Lasers, 2017, 44: 0201019 doi: 10.3788/CJL201744.0201019
    [13]
    Südmeyer T, Kränkel C, Baer C R E, et al. High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation[J]. Applied Physics B: Lasers and Optics, 2009, 97(2): 281-295. doi: 10.1007/s00340-009-3700-z
    [14]
    Wang Dan, Du Yinglei, Wu Yingchen, et al. 20 kW class high-beam-quality CW laser amplifier chain based on a Yb:YAG slab at room temperature[J]. Optics Letters, 2018, 43(16): 3838-3841. doi: 10.1364/OL.43.003838
    [15]
    Guo Yangding, Peng Qinjun, Bo Yong, et al. 24.6 kW near diffraction limit quasi-continuous-wave Nd: YAG slab laser based on a stable–unstable hybrid cavity[J]. Optics Letters, 2020, 45(5): 1136-1139. doi: 10.1364/OL.385387
    [16]
    Dong Jun, Michael B, Mao Yanli, et al. Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet[J]. Journal of the Optical Society of America B, 2003, 20(9): 1975-1979. doi: 10.1364/JOSAB.20.001975
    [17]
    王小军, 杨晶, 韩琳, 等. 一种多波长非相干光谱合束板条激光振荡器: CN201910193822.9[P]. 2019-05-24.

    Wang Xiaojun, Yang Jing, Han Lin, et al. A kind of multi-wavelength incoherent spectral beam-combining slab laser oscillator: CN201910193822.9[P]. 2019-05-24
    [18]
    Daneu V, Sanchez A, Fan e T Y, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity[J]. Optics Letters, 2000, 25(6): 405-407. doi: 10.1364/OL.25.000405
    [19]
    Huang R K, Chann B, Burgess J, et al. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers[C]//Proc of SPIE. 2012: 824102.
    [20]
    Hecht J. Beam combining cranks up the power[J]. Laser Focus World, 2012, 48(6): 50-53.
    [21]
    Xiao Y, Brunet F, Kanskar M, et al. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks[J]. Optics Express, 2012, 20(3): 3296-3301. doi: 10.1364/OE.20.003296
    [22]
    王小军, 宗楠, 彭钦军, 等. 一种高功率高光束质量外腔半导体激光器: CN201811197771.9[P]. 2019-11-15.

    Wang Xiaojun, Zong Nan, Peng Qinjun, et al. A high power and high beam quality external cavity semiconductor laser: CN201811197771.9[P]. 2019-11-15
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article views (1094) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return