Loading [MathJax]/jax/output/SVG/jax.js
Wu Juan, Li Jianmin, Yin Xinqi, et al. Realizing high efficiency spectral beam combining with dual-gratings based on conical diffraction[J]. High Power Laser and Particle Beams, 2020, 32: 121006. doi: 10.11884/HPLPB202032.200192
Citation: Wu Juan, Li Jianmin, Yin Xinqi, et al. Realizing high efficiency spectral beam combining with dual-gratings based on conical diffraction[J]. High Power Laser and Particle Beams, 2020, 32: 121006. doi: 10.11884/HPLPB202032.200192

Realizing high efficiency spectral beam combining with dual-gratings based on conical diffraction

doi: 10.11884/HPLPB202032.200192
  • Received Date: 2020-07-08
  • Rev Recd Date: 2020-11-02
  • Publish Date: 2020-11-19
  • The feasibility of realizing high efficiency spectral beam combining with multilayer dielectric (MLD) gratings based on conical diffraction was analyzed. The spectral beam combining approach was designed with the incident polar angle nearly equals to the Littrow angle based on the conical diffraction theory and two unit beams were experimentally combined. The experimental results indicate that, the diffraction efficiency nearly did not change in the case of conical diffraction when θ was constant and φ=6°. The combining efficiency of the output beam which was composited by two unit beams (wavelength equals to 1050.24 nm and 1064.33 nm respectively) with incident polar angle θ of 43.99° was 92.9%, 8.8% higher than that of approach based on non-conical diffraction. The beam quality factor after combining were Mx2=1.204 and My2=1.467, which were almost equivalent to that of approach based on non-conical diffraction.
  • [1]
    Pratheepan M, Jander D R, Brooks C D, et al. Dual-grating spectral beam combination of high-power fiber lasers[J]. IEEE J Select Top Quantum, 2009, 15(2): 337-343. doi: 10.1109/JSTQE.2008.2012266
    [2]
    Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Opt Lett, 2011, 36(16): 3118-3120. doi: 10.1364/OL.36.003118
    [3]
    Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 2016, 43: 0901009. doi: 10.3788/CJL201643.0901009
    [4]
    Chen Xu, Li Chaoming, Chen Xinrong, et al. Design of multilayer film polarization-independent gratings[C]//Proc of SPIE. 2019: 11336OF.
    [5]
    Tian Fei, Yan Hong, Chen Li, et al. Investigation on the influence of spectral linewidth broadening on the beam quality in spectral beam combination[C]//Proc of SPIE. 2014: 92553N.
    [6]
    Liu Quan, Jin Yunxia, Wu Jianhong, et al. Fabrication of the polarization independent spectral beam combining grating[C]//Proc of SPIE. 2017: 1025514.
    [7]
    Shen Biyao, Zeng Lijiang, Li Lifeng, et al. Fabrication of polarization independent gratings made on multilayer dielectric thin film substrates[J]. High Power Laser and Particle Beams, 2015, 27: 111013.
    [8]
    Chen Junming, Zhang Yibing, Wang Yonglu, et al. Polarization-independent broadband beam combining grating with over 98% measured diffraction efficiency from 1023 to 1080 nm[J]. Optics Letters, 2017, 42(19): 4016-4019. doi: 10.1364/OL.42.004016
    [9]
    Mao Xinyu, Li Chaoming, Qiu Keqiang, et al. Design and fabrication of 1300-line/mm polarization-independent reflection gratings for spectral beam combining[J]. Opt Commun, 2020, 458: 124883. doi: 10.1016/j.optcom.2019.124883
    [10]
    James E H, Richard N P. Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings[J]. Opt Eng, 2019, 58: 087105.
    [11]
    Bayanheshig, Qi Xiangdong, Tang Yuguo, et al. The vector diffraction theory analysis of chromatic dispersion characteristics of phase grating[J]. Acta Physica Sinica, 2003, 52(5): 1157-1161.
  • Relative Articles

    [1]Sun Rufeng, Zhang Kun, Zhang Liming, Zhang Xuexia, Wu Tong, Zhao Hong. 9.6 kW combined light source using dichroic-mirror-based spectral beam combining[J]. High Power Laser and Particle Beams, 2023, 35(12): 121004. doi: 10.11884/HPLPB202335.230191
    [2]Di Pengcheng, Wang Xiaojun, Wang Rujun, Li Xuepeng, Yang Jing, Zong Nan. Spectral beam combing in solid-state lasers[J]. High Power Laser and Particle Beams, 2020, 32(12): 121008. doi: 10.11884/HPLPB202032.200191
    [3]Wang Qiong, Shen Chen, Tan Xin, Qi Xiangdong, Bayanheshig. Fabrication of high-efficiency convex blazed gratings by swing ion beam etching[J]. High Power Laser and Particle Beams, 2019, 31(6): 061001. doi: 10.11884/HPLPB201931.180298
    [4]Zeng Fanjian, Sun Liepeng, Shi Longbo, Gao Zheng, Zhu Zhenglong, Xue Zongheng, Ma Jinying, Chen Qi, Jin Ke'an, Gong Zheng, Huang Guirong, He Yuan. Impact of gain and phase consistency on the efficiency of power synthesis[J]. High Power Laser and Particle Beams, 2019, 31(5): 053001. doi: 10.11884/HPLPB201931.180370
    [5]Jiang Qiuxi, Chen Qiuju, Fan Linhui, Tan Long. Interference synthesis of cross beams from sparse array[J]. High Power Laser and Particle Beams, 2016, 28(05): 053201. doi: 10.11884/HPLPB201628.053201
    [6]Yan Hong, Zhang Wei, Ye Yidong, Chen Li, Tian Fei. Design of diffractive optical elements for filled-aperture coherent beam combining[J]. High Power Laser and Particle Beams, 2015, 27(06): 061002. doi: 10.11884/HPLPB201527.061002
    [7]Ma Yi, Yan Hong, Tian Fei, Sun Yinhong, Zhao Lei, Wang Shufeng, Xie Gengcheng, Li Tenglong, Wang Xiaojun, Liang Xiaobao, Wang Yanshan, Ran Huanhuan, Peng Wanjing, Ke Weiwei, Feng Yujun, Tang Chun, Zhang Kai, Gao Qingsong. Common aperture spectral beam combination of fiber lasers with 5 kW power high-efficiency and high-quality output[J]. High Power Laser and Particle Beams, 2015, 27(04): 040101. doi: 10.11884/HPLPB201527.040101
    [8]Cao Fengli, Zhang Rongzhu. Effects of system errors on coherent polarization beam combining efficiency[J]. High Power Laser and Particle Beams, 2015, 27(06): 061018. doi: 10.11884/HPLPB201527.061018
    [9]Jiang Tingyong, Ning Hui, Shao Hao, Liu Xiaolong, Geng Baogang. Efficiency of microwave combination with normal phase error[J]. High Power Laser and Particle Beams, 2015, 27(08): 083002. doi: 10.11884/HPLPB201527.083002
    [10]Yan Shengmei, Su Wei, Wang Yajun, Chen Zhang, Jin Dazhi, Xiang Wei. Theoretical analysis and numerical simulation of parallel multi-beam THz folded waveguide traveling-wave tube[J]. High Power Laser and Particle Beams, 2014, 26(08): 083105. doi: 10.11884/HPLPB201426.083105
    [11]Xiong Zhengfeng, Ning Hui, Chen Huaibi, Tang Chuanxiang. Design of compact power combiner in rectangular waveguide[J]. High Power Laser and Particle Beams, 2014, 26(06): 063013. doi: 10.11884/HPLPB201426.063013
    [12]Zhang Xiang, Feng Jiansheng, Zou Kuaisheng, Xiong Baoxing, Yuan Xiao. Volume Bragg gratings in high power laser applications[J]. High Power Laser and Particle Beams, 2014, 26(10): 101021. doi: 10.11884/HPLPB201426.101021
    [13]Xu Gang, Xu Yong, Shi Meiyou, Yu Chuan, Liao Yong, Hu Jinguang. Impact of random phase error on microwave power combining efficiency[J]. High Power Laser and Particle Beams, 2013, 25(11): 2914-2918. doi: 10.3788/HPLPB20132511.2914
    [14]Zhang Wenhai, Cao Leifeng, Zhu Xiaoli, Xie Changqing, Liu Shenye. Diffraction efficiency of high line-density X-ray transmission gratings[J]. High Power Laser and Particle Beams, 2012, 24(10): 2347-2350. doi: 10.3788/HPLPB20122410.2347
    [15]ren xueyao, chen xing. Efficiency of microwave power spatial synthesis under random phase shift[J]. High Power Laser and Particle Beams, 2009, 21(07): 0- .
    [16]pu shi-bing, jiang zong-fu, xu xiao-jun. Numerical analysis of spectral beam combining by volume Bragg grating[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [17]yu yi, wang wei-min, lu yan-hua, xie gang, peng yue-feng, liu dong. Simulation of spectrally beam combined diode laser based on grating-cavity[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [18]yang jia-min, ding yao-nan, cao lei-feng, ding yong-kun, yang guo-hong, zheng zhe-jian, wang yao-mei, zhang wen-hai, cui ming-qi, zhu pei-ping, zhao yi-dong, li gang. Study on Transmission Grating Diffraction Efficiencies[J]. High Power Laser and Particle Beams, 2000, 12(06): 0- .
    [20]huangwen-zhong, cai yu-qin, gu yu-qiu, he yin-ling. MEASUREMENTS FOR RELATIVE DIFFRACTION EFFICIENCY OF GRAZING INCIDENCE GRATING SPECTROGRAPH[J]. High Power Laser and Particle Beams, 1997, 09(04): 0- .
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.4 %FULLTEXT: 18.4 %META: 76.5 %META: 76.5 %PDF: 5.1 %PDF: 5.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.6 %其他: 3.6 %其他: 0.3 %其他: 0.3 %China: 1.2 %China: 1.2 %India: 0.0 %India: 0.0 %Iran (ISLAMIC Republic Of): 0.4 %Iran (ISLAMIC Republic Of): 0.4 %Rochester: 0.0 %Rochester: 0.0 %Saudi Arabia: 0.1 %Saudi Arabia: 0.1 %Singapore: 0.1 %Singapore: 0.1 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %Tiran: 0.2 %Tiran: 0.2 %United States: 0.7 %United States: 0.7 %[]: 0.2 %[]: 0.2 %上海: 2.5 %上海: 2.5 %东莞: 0.2 %东莞: 0.2 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %亳州: 0.0 %亳州: 0.0 %佛山: 0.1 %佛山: 0.1 %保定: 0.3 %保定: 0.3 %北京: 13.5 %北京: 13.5 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %台北: 0.3 %台北: 0.3 %台州: 0.5 %台州: 0.5 %合肥: 0.3 %合肥: 0.3 %吉林: 0.1 %吉林: 0.1 %咸宁: 0.0 %咸宁: 0.0 %哥伦布: 0.1 %哥伦布: 0.1 %商丘: 0.1 %商丘: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.3 %天津: 0.3 %威海: 0.0 %威海: 0.0 %孝感: 0.0 %孝感: 0.0 %宁波: 0.0 %宁波: 0.0 %安庆: 0.1 %安庆: 0.1 %安康: 0.0 %安康: 0.0 %宣城: 0.2 %宣城: 0.2 %常州: 0.0 %常州: 0.0 %广州: 1.1 %广州: 1.1 %张家口: 0.5 %张家口: 0.5 %德州: 0.1 %德州: 0.1 %成都: 1.7 %成都: 1.7 %扬州: 0.1 %扬州: 0.1 %新加坡: 0.1 %新加坡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 0.9 %杭州: 0.9 %松原: 0.0 %松原: 0.0 %桂林: 0.0 %桂林: 0.0 %梅州: 0.0 %梅州: 0.0 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.0 %沈阳: 0.0 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 1.1 %深圳: 1.1 %温州: 0.2 %温州: 0.2 %湖州: 0.2 %湖州: 0.2 %漯河: 1.5 %漯河: 1.5 %白城: 0.0 %白城: 0.0 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.1 %福州: 0.1 %福州市闽侯县: 0.0 %福州市闽侯县: 0.0 %秦皇岛: 0.0 %秦皇岛: 0.0 %绵阳: 1.3 %绵阳: 1.3 %芒廷维尤: 10.6 %芒廷维尤: 10.6 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.0 %苏州: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.0 %襄阳: 0.0 %西宁: 45.7 %西宁: 45.7 %西安: 0.2 %西安: 0.2 %西雅图: 0.0 %西雅图: 0.0 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.0 %运城: 1.0 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %金华: 0.0 %金华: 0.0 %铁岭: 0.1 %铁岭: 0.1 %长春: 0.5 %长春: 0.5 %长沙: 0.9 %长沙: 0.9 %长治: 0.1 %长治: 0.1 %阜新: 0.1 %阜新: 0.1 %阳泉: 0.3 %阳泉: 0.3 %随州: 0.0 %随州: 0.0 %鞍山: 0.0 %鞍山: 0.0 %马鞍山: 0.1 %马鞍山: 0.1 %黄山: 0.0 %黄山: 0.0 %其他其他ChinaIndiaIran (ISLAMIC Republic Of)RochesterSaudi ArabiaSingaporeTaiwan, ChinaTiranUnited States[]上海东莞中山临汾丹东亳州佛山保定北京十堰南京台北台州合肥吉林咸宁哥伦布商丘嘉兴大连天津威海孝感宁波安庆安康宣城常州广州张家口德州成都扬州新加坡无锡昆明晋城普洱朝阳杭州松原桂林梅州武汉沈阳洛阳济南深圳温州湖州漯河白城眉山石家庄福州福州市闽侯县秦皇岛绵阳芒廷维尤芝加哥苏州蚌埠衡水衡阳衢州襄阳西宁西安西雅图贵阳运城邯郸郑州重庆金华铁岭长春长沙长治阜新阳泉随州鞍山马鞍山黄山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (1564) PDF downloads(106) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return