Citation: | Zhang Xu, Wang Yong, Zhang Rui. Study on excitation characteristics of high-order mode coaxial multi-gap cavity[J]. High Power Laser and Particle Beams, 2020, 32: 103009. doi: 10.11884/HPLPB202032.200193 |
[1] |
Berry D, Deng H, Dobbs R, et al. Practical aspects of EIK technology[J]. IEEE Trans Electron Devices, 2014, 61(6): 1830-1835. doi: 10.1109/TED.2014.2302741
|
[2] |
Pasour J, Wright E, Nguyen K T, et al. Demonstration of a multikilowatt, solenoidally focused sheet beam amplifier at 94 GHz[J]. IEEE Trans Electron Devices, 2014, 61(6): 1630-1636. doi: 10.1109/TED.2013.2295771
|
[3] |
Shin YM, Wang J X, Barnett L R, et al. Particle-in-cell simulation analysis of a multicavity W-band sheet beam klystron[J]. IEEE Trans Electron Devices, 2011, 58(1): 251-257. doi: 10.1109/TED.2010.2082544
|
[4] |
Nguyen K, Ludeking L, Pasour J, et al. 1.4: Design of a high-gain wideband high-power 220-GHz multiple-beam serpentine TWT[C]// IEEE International Vacuum Electronics Conference. 2010: 23–24.
|
[5] |
Korolev A N, Zaitsev S A, Golenitskij I I, et al. Traditional and novel vacuum electron devices[J]. IEEE Trans Electron Devices, 2011, 48(12): 2929-2935. doi: 10.1109/16.974731
|
[6] |
丁耀根, 阮存军, 沈斌, 等. X波段同轴腔多注速调管的研究[J]. 电子学报, 2006, 34(s1):2337-2341. (Ding Yaogen, Ruan Cunjun, Shen Bin, et al. Study of a X-band coaxial cavity multi beam klystron[J]. Acta Electronica Sinica, 2006, 34(s1): 2337-2341
|
[7] |
Kowalski E J, Shapiro A, Temkin R J. An overmoded W-band coupled-cavity TWT[J]. IEEE Trans Electron Devices, 2015, 62(5): 1609-1616. doi: 10.1109/TED.2015.2407865
|
[8] |
Ding Yaogen, Shen Bin, Cao Jing, et al. Research progress on X-band multi-beam klystron[C]//IEEE International Vacuum Electronics Conference. 2008: 421-422.
|
[9] |
董玉和. 微波圆柱和同轴腔高阶横磁模式及输出耦合[D]. 北京: 中国科学院电子学研究所, 2006: 21-41.
Dong Yuhe. Research on higher order transverse magnetic mode of microwave cylindrical coaxial cavity and its out-coupling[D]. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2006: 21-41
|
[10] |
Lü Suye, Zhang Changqing, Wang Shuzhong, et al. Stability analysis of a planar multiple-beam circuit for W-band high-power extended-interaction klystron[J]. IEEE Trans Electron Devices, 2015, 62(9): 3042-3047. doi: 10.1109/TED.2015.2435031
|
[11] |
张克潜, 李德杰. 微波与光电子学中的电磁理论[M]. 2版. 北京: 电子工业出版社, 2001.
Zhang Keqian, Li Dejie. Electromagnetic theory for microwave and optoelectronics. 2nd ed. Beijing: Publishing House of Electronics Industry, 2001
|
[12] |
肖宇杰, 林福民. 0.3 THz TM10,1,0模同轴耦合腔链[J]. 强激光与粒子束, 2018, 30:103101. (Xiao Yujie, Lin Fumin. 0.3 THz TM10,1,0 mode coaxial coupled cavity chain[J]. High Power Laser and Particle Beams, 2018, 30: 103101 doi: 10.11884/HPLPB201830.180153
|
[13] |
Wang Dongyang, Wang Guangqiang, Wang Jianguo, et al. A high-order mode extended interaction klystron at 0.34 THz[J]. Physics of Plasmas, 2017, 24: 023106. doi: 10.1063/1.4975649
|
[14] |
Chodorow M, Wessel-Berg T. A high-efficiency klystron with distributed interaction[J]. IEEE Trans Electron Devices, 1961, 8(1): 44-55. doi: 10.1109/T-ED.1961.14708
|
[15] |
Luo Jirun, Cui Jian, Zhu Min, et al. Stability analysis of 2π mode operation in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain[C]//IEEE International Vacuum Electronics Conference. 2012: 281-282.
|
[1] | Shang Tianbo, Yang Wei¹, Song Mengmeng, Zhou Qianhong. A hierarchical method for verification of particle-in-cell/ Monte Carlo collision modelling on plasma discharges[J]. High Power Laser and Particle Beams, 2024, 36(3): 033002. doi: 10.11884/HPLPB202436.230335 |
[2] | Fang Jianwei, Hong Yuanzhi, Wang Yigang, Wei Wei, Zhu Bangle, Ge Xiaoqin, Bian Baoyuan, Zhang Wenli, Wang Yong. Design and establishment of cryogenic secondary electron yield measurement system[J]. High Power Laser and Particle Beams, 2021, 33(7): 074003. doi: 10.11884/HPLPB202133.210035 |
[3] | He Yun, Yang Jing, Miao Guanghui, Zhang Na, Cui Wanzhao. High-performance multifunctional apparatus for studying secondary electron emission characteristics of dielectric[J]. High Power Laser and Particle Beams, 2020, 32(3): 033003. doi: 10.11884/HPLPB202032.190318 |
[4] | Zhang Xiaodong, Ouyang Xiaoping, Weng Xiufeng, Jiang Wen'gang, Zhang Jianfu, Tan Xinjian, He Junzhang, Wei Chen. Gamma ray sensitivity of neutron detector based on microchannel plate[J]. High Power Laser and Particle Beams, 2018, 30(4): 044002. doi: 10.11884/HPLPB201830.170388 |
[5] | Meng Xiaohui, Dong Zhiwei. Simulation study of secondary electron effect of proton beam bombardment on metallic target surface[J]. High Power Laser and Particle Beams, 2018, 30(6): 064002. doi: 10.11884/HPLPB201830.170498 |
[6] | Li Kaiwei. Secondary electron multipacting in proton bunch[J]. High Power Laser and Particle Beams, 2016, 28(09): 095102. doi: 10.11884/HPLPB201628.151292 |
[7] | Ke Jianlin, Hu Yonghong, Zhou Changgeng, Qiu Rui, He Tie, Liu Yuguo. Measurement of beam currents downstream from strong electric field[J]. High Power Laser and Particle Beams, 2016, 28(11): 115102. doi: 10.11884/HPLPB201527.160119 |
[8] | Wang Qiangqiang, Deng Keli, Deng Caibo, Deng Bo, Yuan Zheng, Chen Tao, Dong Jianjun, Cao Zhurong, Liu Shenye, Jiang Shaoen. Three-dimensional numeric simulation of multiplication process of secondary electrons in microchannel plate[J]. High Power Laser and Particle Beams, 2015, 27(12): 124005. doi: 10.11884/HPLPB201527.124005 |
[9] | Shao Yan, Lu Zhongtao, Xu Derong, Xu Hongliang. Numerical simulation of electron beam current amplification characteristic in diamond film[J]. High Power Laser and Particle Beams, 2015, 27(05): 055105. doi: 10.11884/HPLPB201527.055105 |
[10] | Zhang Zhongbing, Chen Liang, Ruan Jinlu, Liu Jinliang, Ouyang Xiaoping, Ye Ming, He Yongning, Liu Jun, Liu Linyue. Effects of secondary electron emission on high-precision intensity measurements of proton[J]. High Power Laser and Particle Beams, 2014, 26(09): 094004. doi: 10.11884/HPLPB201426.094004 |
[11] | Li Feng, Wang Meng, Ren Jing, Fang Dongfan, Kang Junjun, Xu Le, Yang Zun. Characteristics of grooved insulator flashover under pulsed voltage[J]. High Power Laser and Particle Beams, 2014, 26(04): 045049. doi: 10.11884/HPLPB201426.045049 |
[12] | You Jianwei, Zhang Jianfeng, Li Yun, Wang Hongguang. Research and extension of Vaughan’s secondary electron emission[J]. High Power Laser and Particle Beams, 2013, 25(11): 3035-3039. doi: 10.3788/HPLPB20132511.3035 |
[13] | Wang Xiaohu, Yang Zhen, Zhang Linwen, Long Jidong, Wei Tao, Yang Guojun, Zhang Zhuo. An ion beam profiler based on secondary electron emission[J]. High Power Laser and Particle Beams, 2013, 25(08): 2121-2124. doi: 10.3788/HPLPB20132508.2121 |
[14] | yang zhiwen, chen tao, yuan zheng, liu shenye, xiao shali. Analytic simulation research on steady-state characteristics of X-ray framing camera[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- . |
[15] | xie aigen, zhang jian, wu hongyan, wang tiebang. Angular distribution of secondary electron emitted from polycrystalline surfaces[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- . |
[16] | zhao xiaoyun, liu jinyuan, ni zhixiang, he juan. Characteristic of plasma sheath in the presence of secondary electron emission and negative ions[J]. High Power Laser and Particle Beams, 2009, 21(09): 0- . |
[17] | ying xuhua, hao jianhong, fan jieqing. Analysis of two-surface multipactor discharge[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- . |
[18] | xiao qiong, peng xiao-hua. Non-linear pressure rise with beam current in BEPCⅡ positron ring[J]. High Power Laser and Particle Beams, 2008, 20(10): 0- . |
[19] | chen xi, du zheng-wei, gong ke. Influence of circuit during injection of EMP into bipolar junction transitor[J]. High Power Laser and Particle Beams, 2007, 19(07): 0- . |
[20] | xie ai-gen, pei yuan-ji, sun hong-bing, wang rong. Relation of incident energy of high energy primary electron and real efficient secondary electron emission coefficient of metal emitter[J]. High Power Laser and Particle Beams, 2004, 16(08): 0- . |
1. | 刘国财,张培旭,刘志珍,李玮瑛,杨洪广. 密封中子管氘-氘产额及二次电子抑制. 核化学与放射化学. 2021(03): 301-308 . ![]() |