Wang Yi, Li Qin, Dai Zhiyong. Numerical analysis of two-dimensional fitting of the electron beam divergence angle in optical transition radiation[J]. High Power Laser and Particle Beams, 2017, 29: 085107. doi: 10.11884/HPLPB201729.170080
Citation: Zhang Xu, Wang Yong, Zhang Rui. Study on excitation characteristics of high-order mode coaxial multi-gap cavity[J]. High Power Laser and Particle Beams, 2020, 32: 103009. doi: 10.11884/HPLPB202032.200193

Study on excitation characteristics of high-order mode coaxial multi-gap cavity

doi: 10.11884/HPLPB202032.200193
  • Received Date: 2020-07-08
  • Rev Recd Date: 2020-09-15
  • Publish Date: 2020-09-29
  • This paper proposes a Ka-band coaxial multi-gap cavity operating in the TM51-2π mode. The CST eigenmode solver is used to study the characteristics of the electric field distribution, and the mode characteristics of this cavity have been analyzed based on the all-pass coupling structure at the outer radius. By combining space-charge wave theory and 3-D particle-in-cell (PIC) simulation analysis, this paper studies the start-oscillation characteristics of the high-order mode coaxial multi-gap cavity using the multi-beam excitation method. And it analyzes the mode stability and beam-wave interaction characteristics of the coaxial multi-gap cavity operating in the high-order mode. The results show that the coaxial multi-gap cavity operating in the TM51-2π mode adopting the coupling method at the outer radius possesses high mode stability. In this structure, multiple beams can not only uniformly inspire the operating mode but also non-uniformly inspire the competition mode. Different from the multi-beam extended-interaction klystron (EIK) operating in the fundamental mode, the high-order mode EIK with this structure establishes the gap voltages separately. Therefore, the peak electric fields with different phases can interact with the beams respectively. While keeping the same total beam current and beam voltage, the operating method driven by more beams requires a smaller focusing magnetic field.
  • [1]
    Berry D, Deng H, Dobbs R, et al. Practical aspects of EIK technology[J]. IEEE Trans Electron Devices, 2014, 61(6): 1830-1835. doi: 10.1109/TED.2014.2302741
    [2]
    Pasour J, Wright E, Nguyen K T, et al. Demonstration of a multikilowatt, solenoidally focused sheet beam amplifier at 94 GHz[J]. IEEE Trans Electron Devices, 2014, 61(6): 1630-1636. doi: 10.1109/TED.2013.2295771
    [3]
    Shin YM, Wang J X, Barnett L R, et al. Particle-in-cell simulation analysis of a multicavity W-band sheet beam klystron[J]. IEEE Trans Electron Devices, 2011, 58(1): 251-257. doi: 10.1109/TED.2010.2082544
    [4]
    Nguyen K, Ludeking L, Pasour J, et al. 1.4: Design of a high-gain wideband high-power 220-GHz multiple-beam serpentine TWT[C]// IEEE International Vacuum Electronics Conference. 2010: 23–24.
    [5]
    Korolev A N, Zaitsev S A, Golenitskij I I, et al. Traditional and novel vacuum electron devices[J]. IEEE Trans Electron Devices, 2011, 48(12): 2929-2935. doi: 10.1109/16.974731
    [6]
    丁耀根, 阮存军, 沈斌, 等. X波段同轴腔多注速调管的研究[J]. 电子学报, 2006, 34(s1):2337-2341. (Ding Yaogen, Ruan Cunjun, Shen Bin, et al. Study of a X-band coaxial cavity multi beam klystron[J]. Acta Electronica Sinica, 2006, 34(s1): 2337-2341
    [7]
    Kowalski E J, Shapiro A, Temkin R J. An overmoded W-band coupled-cavity TWT[J]. IEEE Trans Electron Devices, 2015, 62(5): 1609-1616. doi: 10.1109/TED.2015.2407865
    [8]
    Ding Yaogen, Shen Bin, Cao Jing, et al. Research progress on X-band multi-beam klystron[C]//IEEE International Vacuum Electronics Conference. 2008: 421-422.
    [9]
    董玉和. 微波圆柱和同轴腔高阶横磁模式及输出耦合[D]. 北京: 中国科学院电子学研究所, 2006: 21-41.

    Dong Yuhe. Research on higher order transverse magnetic mode of microwave cylindrical coaxial cavity and its out-coupling[D]. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2006: 21-41
    [10]
    Lü Suye, Zhang Changqing, Wang Shuzhong, et al. Stability analysis of a planar multiple-beam circuit for W-band high-power extended-interaction klystron[J]. IEEE Trans Electron Devices, 2015, 62(9): 3042-3047. doi: 10.1109/TED.2015.2435031
    [11]
    张克潜, 李德杰. 微波与光电子学中的电磁理论[M]. 2版. 北京: 电子工业出版社, 2001.

    Zhang Keqian, Li Dejie. Electromagnetic theory for microwave and optoelectronics. 2nd ed. Beijing: Publishing House of Electronics Industry, 2001
    [12]
    肖宇杰, 林福民. 0.3 THz TM10,1,0模同轴耦合腔链[J]. 强激光与粒子束, 2018, 30:103101. (Xiao Yujie, Lin Fumin. 0.3 THz TM10,1,0 mode coaxial coupled cavity chain[J]. High Power Laser and Particle Beams, 2018, 30: 103101 doi: 10.11884/HPLPB201830.180153
    [13]
    Wang Dongyang, Wang Guangqiang, Wang Jianguo, et al. A high-order mode extended interaction klystron at 0.34 THz[J]. Physics of Plasmas, 2017, 24: 023106. doi: 10.1063/1.4975649
    [14]
    Chodorow M, Wessel-Berg T. A high-efficiency klystron with distributed interaction[J]. IEEE Trans Electron Devices, 1961, 8(1): 44-55. doi: 10.1109/T-ED.1961.14708
    [15]
    Luo Jirun, Cui Jian, Zhu Min, et al. Stability analysis of 2π mode operation in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain[C]//IEEE International Vacuum Electronics Conference. 2012: 281-282.
  • Relative Articles

    [1]Xu Liang, Zhang Qiang, Yuan Chengwei, Liu Jinliang, Sun Yunfei, Gong Hongzhou, Liu Dongqi. A high-power microwave reflectarray antenna based onvariable rotation technique[J]. High Power Laser and Particle Beams, 2024, 36(1): 013002. doi: 10.11884/HPLPB202436.230379
    [2]Gong Hongzhou, Zhang Jiande, Yuan Chengwei, Zhang Qiang, Xu Liang. A tightly coupled dipole array antenna with high power and broadband[J]. High Power Laser and Particle Beams, 2024, 36(1): 013009. doi: 10.11884/HPLPB202436.230139
    [3]Liu Dongqi, Yuan Chengwei, Sun Yunfei, Zhang Qiang, Xu Liang. Investigation on transmission array antenna with high power beam scanning based on spiral antenna[J]. High Power Laser and Particle Beams, 2024, 36(1): 013007. doi: 10.11884/HPLPB202436.230330
    [4]Zhao Xuhao, Bi Shaofeng, Zhang Jiande, Sun Yunfei, Zhang Qiang, Yuan Chengwei. Scalable all-metal reflective array beam scanning antenna[J]. High Power Laser and Particle Beams, 2022, 34(4): 043004. doi: 10.11884/HPLPB202234.210340
    [5]Zhao Yunru, Wang Quanfeng, Wu Qi. Statistical analysis on electromagnetic emission characteristics of phased array antenna[J]. High Power Laser and Particle Beams, 2021, 33(12): 123003. doi: 10.11884/HPLPB202133.210389
    [6]Ma Jiawen, Sun Yunfei, Wan Jianfeng, Zhang Qiang, Yuan Chengwei. Investigation on wide-angle scanning technology for high power resonant waveguide slot array antenna[J]. High Power Laser and Particle Beams, 2021, 33(10): 103002. doi: 10.11884/HPLPB202133.210307
    [7]Fu Yufan, Zhou Dongfang, Zhang Yi, Lü Dalong, Zhang Dewei, Xu Fei. Design of compact wideband Rotman lens for 5G multibeam application[J]. High Power Laser and Particle Beams, 2021, 33(3): 033006. doi: 10.11884/HPLPB202133.200291
    [8]Zhang Hongwei, Liu Chaoyang, Yu Zhihua, Liu Honghua. Design of high power self-rotating beam scanning antenna with no phase shifter[J]. High Power Laser and Particle Beams, 2018, 30(7): 073008. doi: 10.11884/HPLPB201830.170531
    [9]Liao Yong, Xie Ping, Ma Hongge, Meng Fanbao. Longitudinal wideangle scanning of high power microwave waveguide array traveling wave antenna[J]. High Power Laser and Particle Beams, 2018, 30(5): 053002. doi: 10.11884/HPLPB201830.170442
    [10]Ma Yu, Zhang Haifeng, Liu Ting, Li Wenyu. Design of beam scanning metamaterial antenna[J]. High Power Laser and Particle Beams, 2018, 30(10): 103206. doi: 10.11884/HPLPB201830.180088
    [11]Wang Jia, Xiong Xiangzheng, Chen Kaiya, Liao Cheng. Design of high-power ellipse cylindrical dielectric lens antenna array[J]. High Power Laser and Particle Beams, 2016, 28(03): 033015. doi: 10.11884/HPLPB201628.033015
    [12]Zhou Dongfang, Yu Daojie, Ning Hui, Ma Hongge, Chen Changhua, Lin Jingyu, Wei Jinjin, Hou Deting, Hu Tao, Yang Jianhong, Rao Yuping, Wang Liping, Han Chen, Xia Wei. Area distribution of HPM air-breakdown[J]. High Power Laser and Particle Beams, 2014, 26(06): 063026. doi: 10.11884/HPLPB201426.063026
    [13]Yang Yiming, Yuan Chengwei, Qian Baoliang. Variable rule of resonant conductance of slot in wide side dimension adjustable slot-waveguide[J]. High Power Laser and Particle Beams, 2014, 26(05): 053002. doi: 10.11884/HPLPB201426.053002
    [14]Yang Yiming, Yuan Chengwei, Qian Baoliang. Beam steering antenna for high power microwave application[J]. High Power Laser and Particle Beams, 2013, 25(10): 2648-2652. doi: 10.3788/HPLPB20132510.2648
    [15]zhang zhiqiang, fang jinyong, li jiawei, huang huijun, wang kangyi, song zhimin, huang wenhua, jiao yongchang. X-band high power microwave TE11 mode circular polarizer[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [16]qiu shi, liu guozhi, jiao yongchang, huang wenhua, hou qing. Application of three-reflector beam waveguide to HPM radiating antenna[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [17]yuan xuelin, zhang hongde, xu zhefeng, zhang guangfu, yuan naichang. Experiment of UWB time-domain antenna beam scan by controlling delay[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [18]yuan chengwei, zhong huihuang, qian baoliang. Design of bend circular waveguides for high-power microwave applications[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
    [19]huang wen-hua, liu jing-yue, fan ju-ping, chen chang-hua, hu yong-mei, song zhi-min, ning hui. New type of high power microwave detector[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
    [20]zhong zhe-fu. A method for high power microwave beam scan by spin and swing[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.5 %FULLTEXT: 19.5 %META: 76.9 %META: 76.9 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.1 %其他: 4.1 %其他: 0.1 %其他: 0.1 %Canada: 0.3 %Canada: 0.3 %China: 1.6 %China: 1.6 %Davis: 0.3 %Davis: 0.3 %India: 0.1 %India: 0.1 %Ireland: 0.1 %Ireland: 0.1 %Mexico: 0.1 %Mexico: 0.1 %Russian Federation: 0.1 %Russian Federation: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.6 %United States: 0.6 %[]: 0.2 %[]: 0.2 %上海: 1.9 %上海: 1.9 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %休斯顿: 0.1 %休斯顿: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %内江: 0.1 %内江: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 15.1 %北京: 15.1 %十堰: 0.1 %十堰: 0.1 %南京: 0.9 %南京: 0.9 %南昌: 0.1 %南昌: 0.1 %台州: 0.6 %台州: 0.6 %合肥: 0.1 %合肥: 0.1 %哈尔科夫: 0.3 %哈尔科夫: 0.3 %喀什: 0.1 %喀什: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.1 %天津: 0.1 %宣城: 0.2 %宣城: 0.2 %岳阳: 0.1 %岳阳: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 0.3 %张家口: 0.3 %德阳: 0.2 %德阳: 0.2 %成都: 0.6 %成都: 0.6 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %新奥尔良: 0.1 %新奥尔良: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 0.8 %杭州: 0.8 %格兰茨帕斯: 0.1 %格兰茨帕斯: 0.1 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.1 %沈阳: 0.1 %深圳: 0.2 %深圳: 0.2 %湖州: 0.1 %湖州: 0.1 %漯河: 0.2 %漯河: 0.2 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.6 %绵阳: 0.6 %芒廷维尤: 11.1 %芒廷维尤: 11.1 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.3 %莫斯科: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.5 %衢州: 0.5 %西宁: 52.5 %西宁: 52.5 %西安: 0.4 %西安: 0.4 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.2 %运城: 1.2 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.6 %郑州: 0.6 %重庆: 0.1 %重庆: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 0.2 %长沙: 0.2 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.1 %青岛: 0.1 %其他其他CanadaChinaDavisIndiaIrelandMexicoRussian FederationTaiwan, ChinaUnited States[]上海中山临汾丹东休斯顿佛山保定内江加利福尼亚州北京十堰南京南昌台州合肥哈尔科夫喀什大连天津宣城岳阳广州张家口德阳成都扬州新乡新奥尔良无锡昆明晋城普洱杭州格兰茨帕斯武汉沈阳深圳湖州漯河石家庄福州秦皇岛绵阳芒廷维尤芝加哥苏州莫斯科衡阳衢州西宁西安贵阳运城邯郸郑州重庆长春长沙长治阳泉青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (1185) PDF downloads(56) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return