Citation: | Zhang Changqing, Feng Jinjun, Cai Jun, et al. Design of G-band 500 W sheet beam extended-interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103003. doi: 10.11884/HPLPB202032.200195 |
[1] |
Chodorow M, Wessel-Berg T. A high-efficiency klystron with distributed interaction[J]. IRE Trans Electron Devices, 1961, 8(1): 44-55. doi: 10.1109/T-ED.1961.14708
|
[2] |
Chernin D, Burke A, Chernyavskiy I, et al. Extended Interaction Klystrons for terahertz power amplifiers[C]// IEEE International Vacuum Electronics Conference. 2010: 217-218.
|
[3] |
Berry D, Deng H, Dobbs R, et al. Practical aspects of EIK technology[J]. IEEE Trans Electron Devices, 2014, 61(6): 1830-1935. doi: 10.1109/TED.2014.2302741
|
[4] |
Roitman A, Horoyski P, Dobbs R, et al. Space-borne EIK technology[C]// IEEE International Vacuum Electronics Conference. 2014.
|
[5] |
Steer B, Roitman A, Horoyski P, et al. Millimeter-wave Extended Interaction Klystrons for high power ground, airborne and space radars[C]//IEEE Microwave Conference. 2011.
|
[6] |
丁耀根, 刘濮鲲, 张兆传, 等. 大功率微波真空电子器件的应用[J]. 强激光与粒子束, 2011, 23(8):1989-1995. (Ding Yaogen, Liu Pukun, Zhang Zhaochuan, et al. Application of high power microwave vacuum electron devices[J]. High Power Laser and Particle Beams, 2011, 23(8): 1989-1995 doi: 10.3788/HPLPB20112308.1989
|
[7] |
Horoyski P, Berry D, Steer B. A 2 GHz bandwidth, high power W-band Extended Interaction Klystron[C]//IEEE International Vacuum Electronics Conference. 2007.
|
[8] |
Steer B, Horoyski P, Roitman A, et al. A 263 GHz 10 Watt pulsed Extended Interaction Klystron Amplifier[C]//IEEE International Conference on Infrared, Millimeter, & Terahertz Waves. 2013.
|
[9] |
Pasour J, Wright E, Nguyen K T, et al. Demonstration of a multikilowatt, solenoidally focused sheet beam amplifier at 94 GHz[J]. IEEE Trans Electron Devices, 2014, 61(6): 1630-1636. doi: 10.1109/TED.2013.2295771
|
[10] |
Nguyen Khanh T, Pasour J, Wright E L, et al. Design of a G-band sheet-beam Extended-Interaction Klystron[C]//IEEE International Vacuum Electronics Conference. 2009.
|
[11] |
Zhao Jinfeng, Gamzina D, Li Na, et al. Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun[J]. IEEE Trans Electron Devices, 2012, 59(6): 1792-1798. doi: 10.1109/TED.2012.2190294
|
[12] |
Zhao Ding, Lu Xi, Liang Yuan, et al. Researches on an X-band sheet beam klystron[J]. IEEE Trans Electron Devices, 2014, 61(1): 151-158. doi: 10.1109/TED.2013.2291781
|
[13] |
Yu D, Verdes R P, Wilson P. Sheet-beam klystron RF cavities[C]//Particle Accelerator Conference IEEE. 1993, 4: 2681–2683.
|
[14] |
LüSuye, Zhang Changqing, Wang Shuzhong, et al. Stability analysis of a planar multiple-beam circuit for W-band high-power extended-interaction klystron[J]. IEEE Trans Electron Devices, 2015, 62(9): 3042-3048. doi: 10.1109/TED.2015.2435031
|
[15] |
LüSuye, Zhang Changqing, Yu Ge, et al. Analysis of the field shape and mode competition for the higher order modes in the oversized multigap resonant cavity with coplanar beams[J]. IEEE Trans Plasma Science, 2019, 47(4): 1742-1748. doi: 10.1109/TPS.2019.2902350
|
[16] |
Main W, Carmel Y, Ogura K, et al. Electromagnetic properties of open and closed overmoded slow-wave resonators for interaction with relativistic electron beams[J]. IEEE Trans Plasma Science, 1994, 22(5): 566-577. doi: 10.1109/27.338269
|
[17] |
Shin Y M, Wang J X, Barnett L R, et al. Particle-in-cell simulation analysis of a multicavity W-band sheet beam klystron[J]. IEEE Trans Electron Devices, 2010, 58(1): 251-258. doi: 10.1109/TED.2010.2082544
|