Citation: | Wei Ying, Yang Jitao, Zhou Jun, et al. Design of a W-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103007. doi: 10.11884/HPLPB202032.200207 |
[1] |
Wessel-Berg T. A general theory of klystrons with arbitrary, extended interaction fields[R]. Hansen Laboratories ML-376, 1957.
|
[2] |
Steer B, Roitman A, Horoyski P, et al. Advantages of extended interaction klystron technology at millimeter and sub-millimeter frequencies[C]//IEEE International Vacuum Electronics Conference. 2007: 1049-1053.
|
[3] |
Steer B, Roitman A, Horoyski P, et al. High power millimeter-wave extended interaction klystrons for ground, airborne and space radars[C]//IEEE International Vacuum Electronics Conference. 2009.
|
[4] |
Hyttinen M, Roitman A, Horoyski P, et al. A compact, high power, sub-millimeter-wave extended interaction klystron[C]//IEEE International Vacuum Electronics Conference. 2008: 297.
|
[5] |
Berry D, Deng H, Dobbs R, et al. Practical aspects of EIK technology[J]. IEEE Trans Electron Devices, 2014, 61(6): 1830-1835. doi: 10.1109/TED.2014.2302741
|
[6] |
Berry D, Roitman A, Steer B. State-of-the-art W-band extended interaction klystron for the CloudSat program[C]//IEEE International Vacuum Electronics Conference. 2004: 75-76.
|
[7] |
Horoyski P, Berry D, Steer B. A 2 GHz bandwidth, high power W-band extended interaction klystron[C]//IEEE International Vacuum Electronics Conference. 2007: 151-152.
|
[8] |
Zheng Yuan, Luhmann N C, Gamzina D, et al. Double multi-gap output cavity for low voltage ultra-compact W-band klystron[C]//IEEE International Vacuum Electronics Conference. 2019.
|
[9] |
Zeng Zaojin, Zhou Lin, Li Wenjun, et al. Design and optimization of a W-band extended interaction klystron amplifier[C]//IEEE International Vacuum Electronics Conference. 2015.
|
[10] |
Zhu Xiaofang, Jin Xiaolin, Huang Lili, et al. Study of a W-band sheet-beam extended interaction klystron[C]//IEEE International Vacuum Electronics Conference. 2015.
|
[11] |
Chang Zhiwei, Meng Lin, Yin Yong, et al. Circuit design of a compact 5-kV W-band extended interaction klystron[J]. IEEE Trans Electron Devices, 2018, 65(3): 1179-1184. doi: 10.1109/TED.2018.2797051
|
[12] |
Li Shasha, RuanCunjun, Member S, et al. Novel coupling cavities for improving the performance of G-band ladder-type multigap extended interaction klystrons[J]. IEEE Trans Plasma Science, 2020, 48(5): 1350-1356. doi: 10.1109/TPS.2020.2982957
|
[13] |
邢俊毅, 冯进军. 毫米波扩展互作用器件[J]. 真空电子技术, 2010(2):33-37. (Xing Junyi, Feng Jinjun. Millimeter wave extended interaction device[J]. Vacuum Electronics, 2010(2): 33-37
|
[14] |
丁耀根. 大功率速调管的设计制造与应用[M]. 北京: 国防工业出版社, 2010.
Ding Yaogen. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2007
|
[15] |
黄传禄, 丁耀根, 王勇, 等. 多间隙耦合腔注波互作用计算分析[J]. 真空科学与技术学报, 2012, 32(7):605-610. (Huang Chuanlu, Ding Yaogen, Wang Yong, et al. Calculation and analysis of beam-wave interactions in multi-gap coupled cavity[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(7): 605-610
|