Song Xiaozong, Zhou Youxin. Impacting dynamics of ultraviolet induced nanoparticle colloid microjet[J]. High Power Laser and Particle Beams, 2016, 28: 064118. doi: 10.11884/HPLPB201628.064118
Citation: Feng Haiping, Wei Ying, Sun Fujiang, et al. Design of electron optics system for millimeter wave klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103013. doi: 10.11884/HPLPB202032.200208

Design of electron optics system for millimeter wave klystron

doi: 10.11884/HPLPB202032.200208
  • Received Date: 2020-07-20
  • Rev Recd Date: 2020-09-11
  • Publish Date: 2020-09-29
  • In millimeter wave klystron, the electron optics system is very important. The electron optics system is related to the realization and the life time of the klystron. The size of millimeter wave klystron is small. To achieve kW output power in Ka-band and W-band, the higher electron passing rate and lower cathode load are required. The paper analyzes the characteristics of electron optics system for Ka-band and W-band klystron. The design schemes of Ka-band 10 kW klystron and W- band 1 kW klystron are determined. The structures of electron gun and focusing system are calculated by software, and the state of electron gun in focusing magnetic field is optimized by CST. Ka-band klystron and W-band klystron have been made, and the electron optical system designed can meet the requirement of engineering realization of klystron.
  • [1]
    Hyttinen M, Horoyski P, Roitman A, et al. Ka-band extended interaction klystron (EIKs) for satellite communication equipment[C]//IEEE International Vacuum Electronics Conference. 2002: 320-321.
    [2]
    Chermin D, Burke A, Chemyacskiy L, et al. Extended interaction klystron for terahertz power amplifiers[C]//IEEE International Vacuum Electronics Conference. 2010: 217-218.
    [3]
    邓德荣, 李文君, 单李军, 等. W波段扩展互作用速调管电子光学系统[J]. 强激光与粒子束, 2014, 26:113001. (Deng Derong, Li Wenjun, Shan Lijun, et al. Electric optics system for W-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2014, 26: 113001 doi: 10.3788/HPLPB20142611.113001
    [4]
    Vaughan J R M. Synthesis of the Pierce gun[J]. IEEE Trans Electron Devices, 1981, 28(1): 37-41. doi: 10.1109/T-ED.1981.20279
    [5]
    Sharma R K, Sinha S N. An improved method for the synthesis of anode aperture for Pierce guns[J]. IEEE Trans Electron Devices, 2001, 48(2): 395-396. doi: 10.1109/16.902746
    [6]
    廖燕, 贾宝富, 罗正祥. 轴对称收敛型电子枪设计方法再讨论[J]. 强激光与粒子束, 2005, 17(3):427-430. (Liao Yan, Jia Baofu, Luo Zhengxiang. Re-discussion design methods for Pierce guns[J]. High Power Laser and Particle Beams, 2005, 17(3): 427-430
    [7]
    冯海平, 孙福江, 盛兴. Ka波段10kW分布作用速调管的研究[J]. 真空电子技术, 2016(3):5-7. (Feng Haiping, Sun Fujiang, Sheng Xing. Development of a 10 kW Ka-band extended interaction klystron design[J]. Vacuum Electronics, 2016(3): 5-7
    [8]
    李飞, 郝保良, 肖刘, 等. 毫米波静电聚焦行波管电子光学系统的设计[J]. 强激光与粒子束, 2014, 26:023005. (Li Fei, Hao Baoliang, Xiao Liu, et al. Design of electron optic system of millimeter electrostatically focused traveling wave tube[J]. High Power Laser and Particle Beams, 2014, 26: 023005 doi: 10.3788/HPLPB20142602.23005
    [9]
    丁耀根. 大功率速调管的设计制造与应用[M]. 北京: 国防工业出版社. 2010.

    Ding Yaogen. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010
    [10]
    丁耀根. 大功率速调管的理论与计算模拟[M]. 北京: 国防工业出版社. 2008.

    Ding Yaogen. Theory and computer simulation of high power klystron. Beijing: National Defense Industry Press. 2008.
    [11]
    丁耀根. 大功率速调管设计手册[M]. 北京: 国防工业出版社. 1979.

    Ding Yaogen. Design, Manual of high power klystron[M]. Beijing: National Defense Industry Press, 1979
    [12]
    电子管设计手册编委会. 微波电子管磁路设计手册[M]. 北京: 国防工业出版社, 1984.

    Editorial board of electronic tube design manual. Microwave tube magnetic circuit designer[M]. Beijing: National Defense Industry Press, 1984
    [13]
    刘海敬, 蒙林, 殷勇, 等. W波段扩展互作用器件均匀磁聚焦电子光学系统[J]. 强激光与粒子束, 2014, 26:063034. (Liu Haijing, Meng Lin, Yin Yong, et al. W-band extended interaction device uniform magnetic focusing electronic optical system[J]. High Power Laser and Particle Beams, 2014, 26: 063034 doi: 10.11884/HPLPB201426.063034
    [14]
    雷文强, 周霖, 单李军. X波段耦合腔行波管PPM聚焦系统[J]. 强激光与粒子束, 2010, 22(4):837-840. (Deng Derong, Zhou Lin, Shan Lijun. Periodic permanent magnetic focusing system for X-band coupled cavity travelling wave tube[J]. High Power Laser and Particle Beams, 2010, 22(4): 837-840 doi: 10.3788/HPLPB20102204.0837
    [15]
    范青, 甘成才, 孟欢, 等. Ka波段分布作用速调管发射机试验系统[J]. 强激光与粒子束, 2018, 30:053001. (Fan Qing, Gan Chengcai, Meng Huan, et al. Experiment system of Ka-band extended interaction klystron transmitter[J]. High Power Laser and Particle Beams, 2018, 30: 053001 doi: 10.11884/HPLPB201830.170407
  • Relative Articles

    [1]Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36(7): 073001. doi: 10.11884/HPLPB202436.240105
    [2]Luo Yong, Pan Qiwen, Yang Shangdong, Gu Zhixing. Preliminary study of lead-bismuth reactor system analysis code development[J]. High Power Laser and Particle Beams, 2023, 35(7): 076003. doi: 10.11884/HPLPB202335.220369
    [3]Li Chen, Han Ruoyu, Geng Jinyue, Yuan Wei, Cao Yuchen, Ouyang Jiting. Collection method for nanoparticles prepared by electric explosion[J]. High Power Laser and Particle Beams, 2022, 34(7): 075014. doi: 10.11884/HPLPB202234.220007
    [4]Liu Zhigang, Zou Xiaobing, Wang Xinxin. Lagrangian magneto-hydrodynamics simulation for underwater electrical wire explosion[J]. High Power Laser and Particle Beams, 2022, 34(7): 075002. doi: 10.11884/HPLPB202234.210433
    [5]Yang Hang, Liu Xiaoyong, Ma Dengqiu, Zhang Yunfei, Huang Wen, He Jianguo. Fluid dynamics analysis method for MRF of first order discontinuous optical elements[J]. High Power Laser and Particle Beams, 2019, 31(2): 022001. doi: 10.11884/HPLPB201931.180340
    [6]Liu Wei, Duan Xiaoxi, Yang Weiming, Liu Hao, Zhang Huan, Ye Qing, Sun Liang, Wang Zhebin, Jiang Shaoen. Molecular dynamics simulations of shock response for nano-structure foamed gold[J]. High Power Laser and Particle Beams, 2018, 30(5): 052002. doi: 10.11884/HPLPB201830.170478
    [7]Jiang Zhumin, Zhao Wenbo, Wang Jinyu, Sun Wei, Wang Liangzi. Progress of the CORCA-K space-time neutronics simulation code[J]. High Power Laser and Particle Beams, 2017, 29(06): 066003. doi: 10.11884/HPLPB201729.160279
    [8]Yan Honghao, Zhang Xiaofei, Zhao Bibo, Zhao Tiejun, Li Xiaojie. Characteristics of carbon encapsulated copper nanoparticles based on gaseous/condensed explosives detonation[J]. High Power Laser and Particle Beams, 2017, 29(08): 084101. doi: 10.11884/HPLPB201729.170074
    [9]Wang Chao, Li Xiaoyuan, Luo Qing, Ji Fang, Hu Surong, Wei Qilong, Zhang Yunfei, Huang Wen, Tang Guangping, He Jianguo. Dispersion of SiO2 nanoparticles in nonaqueous solvent with surfactant[J]. High Power Laser and Particle Beams, 2015, 27(02): 024155. doi: 10.11884/HPLPB201527.024155
    [10]Song Xiaozong, Gong Jun. Properties of ultraviolet-visible beam propagation in TiO2 nanoparticle colloid[J]. High Power Laser and Particle Beams, 2015, 27(02): 024110. doi: 10.11884/HPLPB201527.024110
    [11]Shen Shuangyan, Jin Xing. Numerical simulation of MHD magnetic control inlet flow field distribution[J]. High Power Laser and Particle Beams, 2015, 27(12): 124008. doi: 10.11884/HPLPB201527.124008
    [12]Li Xiulong, Wan Yongjian, Xu Qinglan, Zhang Yang, Luo Yinchuan, Zhang Rongzhu. Removal effects of waterjet particle impinging in ductile manner[J]. High Power Laser and Particle Beams, 2014, 26(05): 051007. doi: 10.11884/HPLPB201426.051007
    [13]Ma Xun, Deng Jianjun, Jiang Ping, Yuan Jianqiang, Liu Jinfeng, Liu Hongwei, Wang Lingyun, Li Hongtao. Review of flash X-ray generator applied to hydrokinetical experiments[J]. High Power Laser and Particle Beams, 2014, 26(01): 010201. doi: 10.3788/HPLPB201426.010201
    [14]Zhang Lei, Li Zhongguo, Nie Zhongquan, Yang Junyi, Song Yinglin. Study of excited-state absorption of C70/toluene solution using time-resolved non-degenerate pump-probe system[J]. High Power Laser and Particle Beams, 2013, 25(02): 495-499. doi: 10.3788/HPLPB20132502.0495
    [15]Chen Hua, Tang Wenhui, Ran Xianwen, Xu Zhihong, Zhou Hao, Xu Binbin. Three-dimensional smoothed particle hydrodynamics numerical simulation of laser irradiating columnar aluminum target[J]. High Power Laser and Particle Beams, 2012, 24(12): 2802-2806. doi: 10.3788/HPLPB20122412.2802
    [16]Chang Lihua, Li Zuoyou, Xiao Zhengfei, Zou Liyong, Liu Jinhong, Xiong Xueshi. 高速摄影在流体动力学不稳定性研究中的应用[J]. High Power Laser and Particle Beams, 2012, 24(06): 1479-1482. doi: 10.3788/HPLPB20122406.1479
    [17]gong ding, han feng, wang jian-guo. 2D hydrodynamic simulation of GaAs metal-semiconductor-field-effect-transistor[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- .
    [18]wang gang-hua, hu xi-jing, kan ming-xuan. Simulation of magnetohydrodynamics for plasma jetting on wire pinch[J]. High Power Laser and Particle Beams, 2003, 15(10): 0- .
    [19]ning cheng, yang zhen hua, ding ning. Process of radiation magnetohydrodynamics in Al wirearray Zpinch[J]. High Power Laser and Particle Beams, 2002, 14(06): 0- .
  • Cited by

    Periodical cited type(3)

    1. 宋孝宗,姚统,徐国敏. TiO_2纳米颗粒胶体活化系统设计及流场仿真分析. 兰州理工大学学报. 2020(03): 75-80 .
    2. 徐国敏,戴旭杰,姚统,宋孝宗. 余弦光-液耦合喷嘴参数优化及射流抛光实验. 现代制造工程. 2019(05): 52-56 .
    3. 张航航,宋孝宗. 矩形光液耦合喷嘴的流场特性分析. 制造业自动化. 2019(12): 31-35 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.6 %FULLTEXT: 24.6 %META: 73.6 %META: 73.6 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.7 %其他: 4.7 %China: 0.1 %China: 0.1 %India: 0.1 %India: 0.1 %Turkey: 0.5 %Turkey: 0.5 %United States: 0.3 %United States: 0.3 %[]: 0.1 %[]: 0.1 %上海: 1.2 %上海: 1.2 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 2.0 %兰州: 2.0 %北京: 19.7 %北京: 19.7 %十堰: 0.1 %十堰: 0.1 %南宁: 0.1 %南宁: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.5 %台州: 0.5 %哥伦布: 0.1 %哥伦布: 0.1 %天津: 0.1 %天津: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 1.2 %张家口: 1.2 %昆明: 0.1 %昆明: 0.1 %普洱: 0.1 %普洱: 0.1 %杭州: 1.0 %杭州: 1.0 %武汉: 0.1 %武汉: 0.1 %深圳: 0.1 %深圳: 0.1 %湖州: 0.7 %湖州: 0.7 %漯河: 0.4 %漯河: 0.4 %烟台: 0.5 %烟台: 0.5 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %素叻府: 0.4 %素叻府: 0.4 %芒廷维尤: 13.7 %芒廷维尤: 13.7 %芝加哥: 0.7 %芝加哥: 0.7 %莆田: 0.1 %莆田: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 48.3 %西宁: 48.3 %西安: 0.1 %西安: 0.1 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.4 %运城: 0.4 %重庆: 0.1 %重庆: 0.1 %金昌: 0.1 %金昌: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.3 %长治: 0.3 %阳泉: 0.3 %阳泉: 0.3 %其他ChinaIndiaTurkeyUnited States[]上海东莞中山临汾丹东六安兰州北京十堰南宁台北台州哥伦布天津广州张家口昆明普洱杭州武汉深圳湖州漯河烟台石家庄秦皇岛素叻府芒廷维尤芝加哥莆田衡阳西宁西安贵阳运城重庆金昌长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (1225) PDF downloads(54) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return