Citation: | Feng Haiping, Wei Ying, Sun Fujiang, et al. Design of electron optics system for millimeter wave klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103013. doi: 10.11884/HPLPB202032.200208 |
[1] |
Hyttinen M, Horoyski P, Roitman A, et al. Ka-band extended interaction klystron (EIKs) for satellite communication equipment[C]//IEEE International Vacuum Electronics Conference. 2002: 320-321.
|
[2] |
Chermin D, Burke A, Chemyacskiy L, et al. Extended interaction klystron for terahertz power amplifiers[C]//IEEE International Vacuum Electronics Conference. 2010: 217-218.
|
[3] |
邓德荣, 李文君, 单李军, 等. W波段扩展互作用速调管电子光学系统[J]. 强激光与粒子束, 2014, 26:113001. (Deng Derong, Li Wenjun, Shan Lijun, et al. Electric optics system for W-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2014, 26: 113001 doi: 10.3788/HPLPB20142611.113001
|
[4] |
Vaughan J R M. Synthesis of the Pierce gun[J]. IEEE Trans Electron Devices, 1981, 28(1): 37-41. doi: 10.1109/T-ED.1981.20279
|
[5] |
Sharma R K, Sinha S N. An improved method for the synthesis of anode aperture for Pierce guns[J]. IEEE Trans Electron Devices, 2001, 48(2): 395-396. doi: 10.1109/16.902746
|
[6] |
廖燕, 贾宝富, 罗正祥. 轴对称收敛型电子枪设计方法再讨论[J]. 强激光与粒子束, 2005, 17(3):427-430. (Liao Yan, Jia Baofu, Luo Zhengxiang. Re-discussion design methods for Pierce guns[J]. High Power Laser and Particle Beams, 2005, 17(3): 427-430
|
[7] |
冯海平, 孙福江, 盛兴. Ka波段10kW分布作用速调管的研究[J]. 真空电子技术, 2016(3):5-7. (Feng Haiping, Sun Fujiang, Sheng Xing. Development of a 10 kW Ka-band extended interaction klystron design[J]. Vacuum Electronics, 2016(3): 5-7
|
[8] |
李飞, 郝保良, 肖刘, 等. 毫米波静电聚焦行波管电子光学系统的设计[J]. 强激光与粒子束, 2014, 26:023005. (Li Fei, Hao Baoliang, Xiao Liu, et al. Design of electron optic system of millimeter electrostatically focused traveling wave tube[J]. High Power Laser and Particle Beams, 2014, 26: 023005 doi: 10.3788/HPLPB20142602.23005
|
[9] |
丁耀根. 大功率速调管的设计制造与应用[M]. 北京: 国防工业出版社. 2010.
Ding Yaogen. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010
|
[10] |
丁耀根. 大功率速调管的理论与计算模拟[M]. 北京: 国防工业出版社. 2008.
Ding Yaogen. Theory and computer simulation of high power klystron. Beijing: National Defense Industry Press. 2008.
|
[11] |
丁耀根. 大功率速调管设计手册[M]. 北京: 国防工业出版社. 1979.
Ding Yaogen. Design, Manual of high power klystron[M]. Beijing: National Defense Industry Press, 1979
|
[12] |
电子管设计手册编委会. 微波电子管磁路设计手册[M]. 北京: 国防工业出版社, 1984.
Editorial board of electronic tube design manual. Microwave tube magnetic circuit designer[M]. Beijing: National Defense Industry Press, 1984
|
[13] |
刘海敬, 蒙林, 殷勇, 等. W波段扩展互作用器件均匀磁聚焦电子光学系统[J]. 强激光与粒子束, 2014, 26:063034. (Liu Haijing, Meng Lin, Yin Yong, et al. W-band extended interaction device uniform magnetic focusing electronic optical system[J]. High Power Laser and Particle Beams, 2014, 26: 063034 doi: 10.11884/HPLPB201426.063034
|
[14] |
雷文强, 周霖, 单李军. X波段耦合腔行波管PPM聚焦系统[J]. 强激光与粒子束, 2010, 22(4):837-840. (Deng Derong, Zhou Lin, Shan Lijun. Periodic permanent magnetic focusing system for X-band coupled cavity travelling wave tube[J]. High Power Laser and Particle Beams, 2010, 22(4): 837-840 doi: 10.3788/HPLPB20102204.0837
|
[15] |
范青, 甘成才, 孟欢, 等. Ka波段分布作用速调管发射机试验系统[J]. 强激光与粒子束, 2018, 30:053001. (Fan Qing, Gan Chengcai, Meng Huan, et al. Experiment system of Ka-band extended interaction klystron transmitter[J]. High Power Laser and Particle Beams, 2018, 30: 053001 doi: 10.11884/HPLPB201830.170407
|
[1] | Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36(7): 073001. doi: 10.11884/HPLPB202436.240105 |
[2] | Luo Yong, Pan Qiwen, Yang Shangdong, Gu Zhixing. Preliminary study of lead-bismuth reactor system analysis code development[J]. High Power Laser and Particle Beams, 2023, 35(7): 076003. doi: 10.11884/HPLPB202335.220369 |
[3] | Li Chen, Han Ruoyu, Geng Jinyue, Yuan Wei, Cao Yuchen, Ouyang Jiting. Collection method for nanoparticles prepared by electric explosion[J]. High Power Laser and Particle Beams, 2022, 34(7): 075014. doi: 10.11884/HPLPB202234.220007 |
[4] | Liu Zhigang, Zou Xiaobing, Wang Xinxin. Lagrangian magneto-hydrodynamics simulation for underwater electrical wire explosion[J]. High Power Laser and Particle Beams, 2022, 34(7): 075002. doi: 10.11884/HPLPB202234.210433 |
[5] | Yang Hang, Liu Xiaoyong, Ma Dengqiu, Zhang Yunfei, Huang Wen, He Jianguo. Fluid dynamics analysis method for MRF of first order discontinuous optical elements[J]. High Power Laser and Particle Beams, 2019, 31(2): 022001. doi: 10.11884/HPLPB201931.180340 |
[6] | Liu Wei, Duan Xiaoxi, Yang Weiming, Liu Hao, Zhang Huan, Ye Qing, Sun Liang, Wang Zhebin, Jiang Shaoen. Molecular dynamics simulations of shock response for nano-structure foamed gold[J]. High Power Laser and Particle Beams, 2018, 30(5): 052002. doi: 10.11884/HPLPB201830.170478 |
[7] | Jiang Zhumin, Zhao Wenbo, Wang Jinyu, Sun Wei, Wang Liangzi. Progress of the CORCA-K space-time neutronics simulation code[J]. High Power Laser and Particle Beams, 2017, 29(06): 066003. doi: 10.11884/HPLPB201729.160279 |
[8] | Yan Honghao, Zhang Xiaofei, Zhao Bibo, Zhao Tiejun, Li Xiaojie. Characteristics of carbon encapsulated copper nanoparticles based on gaseous/condensed explosives detonation[J]. High Power Laser and Particle Beams, 2017, 29(08): 084101. doi: 10.11884/HPLPB201729.170074 |
[9] | Wang Chao, Li Xiaoyuan, Luo Qing, Ji Fang, Hu Surong, Wei Qilong, Zhang Yunfei, Huang Wen, Tang Guangping, He Jianguo. Dispersion of SiO2 nanoparticles in nonaqueous solvent with surfactant[J]. High Power Laser and Particle Beams, 2015, 27(02): 024155. doi: 10.11884/HPLPB201527.024155 |
[10] | Song Xiaozong, Gong Jun. Properties of ultraviolet-visible beam propagation in TiO2 nanoparticle colloid[J]. High Power Laser and Particle Beams, 2015, 27(02): 024110. doi: 10.11884/HPLPB201527.024110 |
[11] | Shen Shuangyan, Jin Xing. Numerical simulation of MHD magnetic control inlet flow field distribution[J]. High Power Laser and Particle Beams, 2015, 27(12): 124008. doi: 10.11884/HPLPB201527.124008 |
[12] | Li Xiulong, Wan Yongjian, Xu Qinglan, Zhang Yang, Luo Yinchuan, Zhang Rongzhu. Removal effects of waterjet particle impinging in ductile manner[J]. High Power Laser and Particle Beams, 2014, 26(05): 051007. doi: 10.11884/HPLPB201426.051007 |
[13] | Ma Xun, Deng Jianjun, Jiang Ping, Yuan Jianqiang, Liu Jinfeng, Liu Hongwei, Wang Lingyun, Li Hongtao. Review of flash X-ray generator applied to hydrokinetical experiments[J]. High Power Laser and Particle Beams, 2014, 26(01): 010201. doi: 10.3788/HPLPB201426.010201 |
[14] | Zhang Lei, Li Zhongguo, Nie Zhongquan, Yang Junyi, Song Yinglin. Study of excited-state absorption of C70/toluene solution using time-resolved non-degenerate pump-probe system[J]. High Power Laser and Particle Beams, 2013, 25(02): 495-499. doi: 10.3788/HPLPB20132502.0495 |
[15] | Chen Hua, Tang Wenhui, Ran Xianwen, Xu Zhihong, Zhou Hao, Xu Binbin. Three-dimensional smoothed particle hydrodynamics numerical simulation of laser irradiating columnar aluminum target[J]. High Power Laser and Particle Beams, 2012, 24(12): 2802-2806. doi: 10.3788/HPLPB20122412.2802 |
[16] | Chang Lihua, Li Zuoyou, Xiao Zhengfei, Zou Liyong, Liu Jinhong, Xiong Xueshi. 高速摄影在流体动力学不稳定性研究中的应用[J]. High Power Laser and Particle Beams, 2012, 24(06): 1479-1482. doi: 10.3788/HPLPB20122406.1479 |
[17] | gong ding, han feng, wang jian-guo. 2D hydrodynamic simulation of GaAs metal-semiconductor-field-effect-transistor[J]. High Power Laser and Particle Beams, 2006, 18(07): 0- . |
[18] | wang gang-hua, hu xi-jing, kan ming-xuan. Simulation of magnetohydrodynamics for plasma jetting on wire pinch[J]. High Power Laser and Particle Beams, 2003, 15(10): 0- . |
[19] | ning cheng, yang zhen hua, ding ning. Process of radiation magnetohydrodynamics in Al wirearray Zpinch[J]. High Power Laser and Particle Beams, 2002, 14(06): 0- . |
1. | 宋孝宗,姚统,徐国敏. TiO_2纳米颗粒胶体活化系统设计及流场仿真分析. 兰州理工大学学报. 2020(03): 75-80 . ![]() | |
2. | 徐国敏,戴旭杰,姚统,宋孝宗. 余弦光-液耦合喷嘴参数优化及射流抛光实验. 现代制造工程. 2019(05): 52-56 . ![]() | |
3. | 张航航,宋孝宗. 矩形光液耦合喷嘴的流场特性分析. 制造业自动化. 2019(12): 31-35 . ![]() |