Citation: | Lu Qiao, Mao qinghe. Two key frontier issues on picosecond pulses generated by mode-locked fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32: 121005. doi: 10.11884/HPLPB202032.200210 |
[1] |
Zhao Z, Sheehy B, Minty M. Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier[J]. Optics Express, 2017, 25(7): 8138-8143. doi: 10.1364/OE.25.008138
|
[2] |
Yang K, Zheng S, Wu Y, et al. Low-repetition-rate all-fiber integrated optical parametric oscillator for coherent anti-Stokes Raman spectroscopy[J]. Optics Express, 2018, 26(13): 17519-17528. doi: 10.1364/OE.26.017519
|
[3] |
Phillips K C, Gandhi H H, Mazur E, et al. Ultrafast laser processing of materials: a review[J]. Adv Opt Photon, 2015, 7(4): 684-712. doi: 10.1364/AOP.7.000684
|
[4] |
Fattahi H, Barros H G, Gorjan M, et al. Third-generation femtosecond technology[J]. Optica, 2014, 1(1): 45-63. doi: 10.1364/OPTICA.1.000045
|
[5] |
康民强, 邓颖, 王方, 等. 皮秒脉冲激光远程测距应用探讨及系统初步设计[J]. 激光与光电子学进展, 2015, 52(10):241-245. (Kang Mingqiang, Deng Ying, Wang Fang, et al. Discuss and design of picosecond laser pulse applied in long-distance ranging[J]. Laser & Optoelectronics Progress, 2015, 52(10): 241-245
|
[6] |
Chen W, Liu B, Song Y, et al. High pulse energy fiber/solid-slab hybrid picosecond pulse system for material processing on polycrystalline diamonds[J]. High Power Laser Science and Engineering, 2018, 6: e18. doi: 10.1017/hpl.2018.20
|
[7] |
郑向明, 李祝莲, 伏红林, 等. 云台1.2 m望远镜共光路千赫兹卫星激光测距系统[J]. 光子学报, 2011, 31: 0512002.
Zheng Xiangming, Li Zhulian, Fu Honglin, et al. 1.2 m telescope satellite co-optical path kHZ laser ranging system[J]. Acta Optica Sinica, 2011, 31: 0512002.
|
[8] |
Ma P, Tao R, Huang L, et al. 608 W average power picosecond all fiber polarization-maintained amplifier with narrow-band and near-diffraction-limited beam quality[J]. Journal of Optics, 2015, 17: 075501. doi: 10.1088/2040-8978/17/7/075501
|
[9] |
Chan H Y, Alam S U, Xu L, et al. Compact, high-pulse-energy, high-power, picosecond master oscillator power amplifier[J]. Optics Express, 2014, 22(18): 21938-21943. doi: 10.1364/OE.22.021938
|
[10] |
Minasian R A. Ultra-wideband and adaptive photonic signal processing of microwave signals[J]. IEEE Journal of Quantum Electronics, 2016, 52(1).
|
[11] |
Kanzelmeyer S, Sayinc H, Theeg T, et al. All-fiber based amplification of 40 ps pulses from a gain-switched laser diode[J]. Optics Express, 2011, 19(3): 1854-1859. doi: 10.1364/OE.19.001854
|
[12] |
Zayhowski J J, Dill C. Diode-pumped passively Q-switched picosecond microchip lasers[J]. Optics Letters, 1994, 19(18): 1427-1429. doi: 10.1364/OL.19.001427
|
[13] |
Wang P, Zhou S H, Lee K K, et al. Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser[J]. Optics Communications, 1995, 114(5): 439-441.
|
[14] |
Nodop D, Limpert J, Hohmuth R, et al. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime[J]. Optics Letters, 2007, 32(15): 2115-2117. doi: 10.1364/OL.32.002115
|
[15] |
Fu W, Wright L G, Sidorenko P, et al. Several new directions for ultrafast fiber lasers [Invited][J]. Optics Express, 2018, 26(8): 9432-9463. doi: 10.1364/OE.26.009432
|
[16] |
Nelson L, Jones D, Tamura K, et al. Ultrashort-pulse fiber ring lasers[J]. Applied Physics B: Lasers and Optics, 1997, 65(2): 277-294. doi: 10.1007/s003400050273
|
[17] |
Haus H A, Tamura K, Nelson L E, et al. Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment[J]. IEEE Journal of Quantum Electronics, 1995, 31(3): 591-598. doi: 10.1109/3.364417
|
[18] |
Ilday F O, Buckley J R, Clark W G, et al. Self-similar evolution of parabolic pulses in a laser[J]. Phys Rev Lett, 2004, 92: 213902. doi: 10.1103/PhysRevLett.92.213902
|
[19] |
Chong A, Renninger W H, Wise F W. Environmentally stable all-normal-dispersion femtosecond fiber laser[J]. Optics Letters, 2008, 33(10): 1071-1073. doi: 10.1364/OL.33.001071
|
[20] |
Liu Z, Ziegler Z M, Wright L G, et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 2017, 4(6): 649-654. doi: 10.1364/OPTICA.4.000649
|
[21] |
Chong A, Wright L G, Wise F W. Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress[J]. Reports on Progress in Physics, 2015, 78(11).
|
[22] |
Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 2012, 6(2): 84-92. doi: 10.1038/nphoton.2011.345
|
[23] |
Sidorenko P, Fu W, Wright L G, et al. Self-seeded, multi-megawatt, Mamyshev oscillator[J]. Optics Letters, 2018, 43(11): 2672-2675. doi: 10.1364/OL.43.002672
|
[24] |
Sidorenko P, Fu W, Wright L G, et al. Self-seeded high-power Mamyshev oscillator[C]//Proceedings of the Conference on Lasers and Electro-Optics. 2018.
|
[25] |
Renninger W H, Chong A, Wise F W. Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(1): 389-398. doi: 10.1109/JSTQE.2011.2157462
|
[26] |
Renninger W, Chong A, Wise F. Dissipative solitons in normal-dispersion fiber lasers[J]. Physical Review A, 2008, 77: 023814. doi: 10.1103/PhysRevA.77.023814
|
[27] |
Turchinovich D, Liu X, Laegsgaard J. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber[J]. Optics Express, 2008, 16(18): 14004-14014. doi: 10.1364/OE.16.014004
|
[28] |
Deslandes P, Perrin M, Saby Y J, et al. Picosecond to femtosecond pulses from high power self mode–locked ytterbium rod-type fiber laser[J]. Optics Express, 2013, 21(9): 10731-10738. doi: 10.1364/OE.21.010731
|
[29] |
Szczepanek J, Kardas T M, Michalska M, et al. Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror[J]. Optics Letters, 2015, 40(15): 3500-3503. doi: 10.1364/OL.40.003500
|
[30] |
Agnesi A, Carral, Marco C, et al. Fourier-limited 19-ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085 nm[J]. IEEE Photonics Technology Letters, 2012, 24(9): 927.
|
[31] |
Anderson D, Desaix M, Lisak M, et al. Wave breaking in nonlinear-optical fibers[J]. J Opt Soc Am B, 1992, 9(8): 1358-1361. doi: 10.1364/JOSAB.9.001358
|
[32] |
Lu Q, Ma J, Duan D, et al. Reducing the pulse repetition rate of picosecond dissipative soliton passively mode-locked fiber laser[J]. Optics Express, 2019, 27(3): 2809-2816. doi: 10.1364/OE.27.002809
|
[33] |
赵明, 郝强, 郭政儒, 等. 结构紧凑的kHz重复频率光纤-固体皮秒激光光源[J]. 中国激光, 2018, 45:0401010. (Zhao Ming, Hao Qiang, Guo Zengru, et al. Compact fiber-solid picosecond laser source with kilohertz repetition rate[J]. Chinese Journal of Lasers, 2018, 45: 0401010 doi: 10.3788/CJL201845.0401010
|
[34] |
Agnesi A, Carra L, Pirzio F, et al. Low repetition rate, hybrid fiber/solid-state, 1064 nm picosecond master oscillator power amplifier laser system[J]. J Opt Soc Am B, 2013, 30(11): 2960-2965. doi: 10.1364/JOSAB.30.002960
|
[35] |
Chen Y, Liu K, Yang J, et al. 8.2 mJ, 324 MW, 5 kHz picosecond MOPA system based on Nd: YAG slab amplifiers[J]. Journal of Optics, 2016, 18: 075503. doi: 10.1088/2040-8978/18/7/075503
|
[36] |
Hönninger C, Paschotta R, Morier-Genoud F, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. J Opt Soc Am B, 1999, 16(1): 46-56. doi: 10.1364/JOSAB.16.000046
|
[37] |
Fattahi H, Schwarz A, Geng X T, et al. Decoupling chaotic amplification and nonlinear phase in high-energy thin-disk amplifiers for stable OPCPA pumping[J]. Optics Express, 2014, 22(25): 31440-31447. doi: 10.1364/OE.22.031440
|
[38] |
Agnesi A, Carrà L, Piccoli R, et al. Nd: YVO4 amplifier for ultrafast low-power lasers[J]. Optics Letters, 2012, 37(17): 3612-3614. doi: 10.1364/OL.37.003612
|
[39] |
Chang C L, Krogen P, Hong K H, et al. High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier[J]. Optics Express, 2015, 23(8): 10132-10144. doi: 10.1364/OE.23.010132
|
[40] |
Délen X, Balembois F, Georges P. Design of a high gain single stage and single pass Nd: YVO4 passive picosecond amplifier[J]. J Opt Soc Am B, 2012, 29(9): 2339-2346. doi: 10.1364/JOSAB.29.002339
|
[41] |
Bale B G, Kutz J N, Chong A, et al. Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers[J]. J Opt Soc Am B, 2008, 25(10): 1763-1670. doi: 10.1364/JOSAB.25.001763
|
[42] |
Baumgartl M, Abreu-Afonso J, Díez A, et al. Environmentally stable picosecond Yb fiber laser with low repetition rate[J]. Applied Physics B, 2013, 111(1): 39-43.
|
[43] |
Liu X. Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser[J]. Physical Review A, 2010, 81: 023811. doi: 10.1103/PhysRevA.81.023811
|
[44] |
Chong A, Renninger W H, Wise F W. Properties of normal-dispersion femtosecond fiber lasers[J]. J Opt Soc Am B, 2008, 25(2): 140-148. doi: 10.1364/JOSAB.25.000140
|
[45] |
Chong A, Renninger W H, Wise F W. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ[J]. Optics Letters, 2007, 32(16): 2408-2410. doi: 10.1364/OL.32.002408
|
[46] |
Renninger W H, Chong A, Wise F W. Giant-chirp oscillators for short-pulse fiber amplifiers[J]. Optics Letters, 2008, 33(24): 3025-3027. doi: 10.1364/OL.33.003025
|
[47] |
Kong L J, Zhao L M, Lefrancois S, et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Optics Letters, 2012, 37(2): 253-255. doi: 10.1364/OL.37.000253
|
[48] |
Limpert J, Deguil-Robin N, Manek-Hönninger I, et al. High-power picosecond fiber amplifier based on nonlinear spectral compression[J]. Optics Letters, 2005, 30(7): 714-716. doi: 10.1364/OL.30.000714
|
[49] |
Zhao Z, Dunham B M, Wise F W. Generation of 150 W average and 1 MW peak power picosecond pulses from a rod-type fiber master oscillator power amplifier[J]. J Opt Soc Am B, 2014, 31(1): 33-37. doi: 10.1364/JOSAB.31.000033
|
[50] |
Chen W, Song Y, Jung K, et al. Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser[J]. Optics Express, 2016, 24(2): 1347-1357. doi: 10.1364/OE.24.001347
|
[51] |
Wang Y, Lu B L, Qi X Y, et al. Environmentally stable pulse energy-tunable picosecond fiber laser[J]. IEEE Photonics Technology Letters, 2016, 29(1): 150-153.
|
[52] |
Finot C, Chaussard F, Boscolo S. Simple guidelines to predict self-phase modulation patterns[J]. J Opt Soc Am B, 2018, 35(12): 3143-3152. doi: 10.1364/JOSAB.35.003143
|
[53] |
Griffiths P R, Haseth J A D. Fourier Transform infrared spectrometry[M]. New Jersey: Wiley Press. 2006.
|
[54] |
Schimpf D N, Seise E, Limpert J, et al. Self-phase modulation compensated by positive dispersion in chirped-pulse systems[J]. Optics Express, 2009, 17(7): 4997-5007. doi: 10.1364/OE.17.004997
|
[55] |
Agrawal G. Nonlinear fiber optics[M]. Boston: Academic Press. 2013.
|
[56] |
Pinault S C, Potask M J. Frequency broadening by self-phase modulation in optical fibers[J]. J Opt Soc Am B, 1985, 2(8): 1318-1319. doi: 10.1364/JOSAB.2.001318
|
[57] |
Lu Q, Ma J, Duan D, et al. High fidelity picosecond pulse fiber amplification with inter-stage notch filter[J]. Journal of Lightwave Technology, 2020(99): 1-1.
|