Ni Xiaolong, Zhu Xufang, Yu Xin, et al. Laser beam coherence and divergence angle complex controlling technique[J]. High Power Laser and Particle Beams, 2020, 32: 071008. doi: 10.11884/HPLPB202032.200078
Citation: Chu Kairong, Sheng Xing, Li Dongfeng, et al. Development of X-band 50MW klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103012. doi: 10.11884/HPLPB202032.200211

Development of X-band 50MW klystron

doi: 10.11884/HPLPB202032.200211
  • Received Date: 2020-07-21
  • Rev Recd Date: 2020-09-23
  • Publish Date: 2020-09-29
  • This paper introduces a technical scheme of X-band high peak power klystron. At present, this klystron has achieved 50 MW pulse output power and 57% efficiency at X band. The pulse width is up to 3.6 μs. By using some key techniques, such as COM method, circle waveguide travelling-wave window, Anticorona ring and coating thin film on ceramic, some problems such as high efficiency, high peak power capacity and high reliability are solved. In particular, COM method can be used to optimize electron beam bunching. Compared with the second harmonic bunching method, the interaction efficiency can be further improved by about 10% under the same length of high frequency tube body. Because of the successfully developed klystron, the peak power level of domestic X-band klystron has been raised from 3 MW to 50 MW, and the performance of the klystron has reached the international leading level.
  • [1]
    Syratchev I. Prospects for high-efficiency klystrons[C]// EnEfficient RF Sources Workshop. 2014.
    [2]
    Sprehn D, Caryotakis G, Haase A, et al. Current status of the next linear collider X-band klystron development program[C]//9th European Particle Accelerator Conference. 2004
    [3]
    Yano A, Ohkubo Y. Design consideration to PPM klystron for industrial linac[C]//Proceedings of LINAC. 2002
    [4]
    Begum R, Balkcum A, Hunter T, et al. Evaluation of a 4-gap extended interaction output circuit for a 50MW X-band klystron[C]//IEEE International Vacuum Electronics Conference. 2014.
    [5]
    丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010.

    Ding Yaogen. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010
    [6]
    刘联保、莫纯昌. 电子工业生产技术手册(4): 电真空器件卷[M]. 北京: 国防工业出版社, 1990.

    Liu Lianbao, Mo Chunchang. Production technology manual for electronic industry[M]. Beijing: National Defense Industry Press, 1990
    [7]
    周祖圣, 田双敏, 董东. 高功率速调管聚焦磁场设计研究[J]. 强激光与粒子束, 2006, 18(8):1337-1340. (Zhou Zusheng, Tian Shuangmin, Dong Dong. Design of focusing magnet for high power klystron[J]. High Power Laser and Particle Beams, 2006, 18(8): 1337-1340
    [8]
    Guzilov I A. BAC method of increasing the efficiency in klystrons[C]//Tenth IEEE International Vacuum Electron Sources Conference. 2014.
    [9]
    Marrelli C. High efficiency klystron design[C]//RF CLIC Meeting. 2014.
    [10]
    Jensen A, Fazio M, Haase A, et al. Retrofitting the 5045 klystron for higher efficiency[C]//IEEE International Vacuum Electronics Conference. 2015.
    [11]
    Kowalczyk R, Haase A, Jongewaard E, et al. Test of a BAC klystron[C]//IEEE International Vacuum Electronics Conference. 2017.
    [12]
    Igor G, Anatoly S, Oleg M, et al. Comparison of 6 MW S-band pulsed BAC MBK with the existing SBKs[C]//IEEE International Vacuum Electronics Conference. 2017.
    [13]
    钟勇, 丁海兵, 王树忠, 等. Ku波段扩展互作用速调管设计[J]. 强激光与粒子束, 2011, 23(11):3055-3058. (Zhong Yong, Ding Haibing, Wang Shuzhong, et al. Design of Ku-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2011, 23(11): 3055-3058 doi: 10.3788/HPLPB20112311.3055
    [14]
    Fowkes W R, Callin R S, Tudzinski M S. Component development for X-band above 100 MW[C]//Particle Accelerator Conference. 1991.
    [15]
    Fowkes W R. Large diameter reduced field TE01 travelling wave window for X-band[C]//Particle Accelerator Conference. 1999.
    [16]
    王文祥. 微波工程技术[M]. 北京: 国防工业出版社, 2009.

    Wang Wenxiang. Microwave engineering technology[M]. Beijing: National Defense Industry Press, 2009)
  • Relative Articles

    [1]Qiang Xiwen, Wu Min, Zong Fei, Zhai Shengwei, Hu Yuehong, Feng Shuanglian, Zhao Junwei, Chang Jinyong. High-precision measurement technique of isoplanatic angle[J]. High Power Laser and Particle Beams, 2021, 33(8): 081008. doi: 10.11884/HPLPB202133.210215
    [2]Hu Xiaodan, Su Changdong, Luo Tao, Qing Chun, Sun Gang, Liu Qing, Li Xuebin, Zhu Wenyue, Wu Xiaoqing. Estimating the profiles of atmospheric turbulence above Korla, Maoming, Lhasa by Thorpe scale[J]. High Power Laser and Particle Beams, 2019, 31(8): 081002. doi: 10.11884/HPLPB201931.190074
    [3]Xu Chunyan, Zhan Guowei, Qing Chun, Cai Jun, Wu Xiaoqing. Estimation and measurement of optical turbulence over land and offshore[J]. High Power Laser and Particle Beams, 2018, 30(2): 021003. doi: 10.11884/HPLPB201830.170296
    [4]Zhang Peng, Qin Kaiyu, Jiang Dagang, Deng Ke, Yao Zhoushi. Analysis of heterodyne efficiency of near earth coherent laser communication links[J]. High Power Laser and Particle Beams, 2015, 27(04): 041006. doi: 10.11884/HPLPB201527.041006
    [5]Wang Qian, Mei Haiping, Xiao Shumei, Huang Honghua, Qian Xianmei, Zhu Wenyue, Rao Ruizhong. Fractal and intermittency analysis of atmospheric optical turbulence near ground[J]. High Power Laser and Particle Beams, 2014, 26(02): 021010. doi: 10.3788/HPLPB201426.021010
    [6]Huang Dequan, Zhou Wenchao, Qiu Hong, Zhang Jianzhu, Yun Yu, Tian Xiaoqiang. Research on measurement of atmospheric coherence length using Shack-Hartmann wavefront sensor[J]. High Power Laser and Particle Beams, 2014, 26(08): 081003. doi: 10.11884/HPLPB201426.081003
    [7]Wu Fengtie, Chen Jing, Cheng Zhiming. Influence of base angle and focal length of vaulted axicons on bottle beams[J]. High Power Laser and Particle Beams, 2013, 25(03): 569-573. doi: 10.3788/HPLPB20132503.0569
    [8]Liu Jun, Wang Shaopeng, Gao Ming. Scintillation of polarized and partially coherent laser beam scattered by diffuse target and propagating in turbulent atmosphere[J]. High Power Laser and Particle Beams, 2013, 25(01): 31-36. doi: 10.3788/HPLPB20132501.0031
    [9]li Fei, Wu Yi, Hou Zaihong. Data processing of scintillation index measurement in real atmosphere[J]. High Power Laser and Particle Beams, 2012, 24(06): 1349-1352. doi: 10.3788/HPLPB20122406.1349
    [10]li peng, zheng yi, han chao, fan jiangbing, song lijun, geng na, xiang zhen, zhang yijun. Observation of lightning optical signals with photodiode detector[J]. High Power Laser and Particle Beams, 2011, 23(10): 0- .
    [11]ma haotong, zhou pu, wang xiaolin, ma yanxing, wang xiaobo, xu xiaojun, liu zejin. Generation of dark hollow beam with phase-only liquid crystal spatial light modulator[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- .
    [12]rao lianzhou, zheng xiaoxia, xiao boqi. Radiation forces of focused partially coherent vortex beams on a dielectric sphere[J]. High Power Laser and Particle Beams, 2010, 22(01): 0- .
    [13]qiao chun-hong, fan cheng-yu, wang ying-jian, feng xiao-xing, cheng dong-jie. Simulation experiment of high energy laser propagation in the atmosphere[J]. High Power Laser and Particle Beams, 2008, 20(11): 0- .
    [14]liu hou-tong, li chao, wang zhen-zhu, huang wei, zhou jun. Analysis on eye safety of airborne atmosphere detection lidar and eye safety[J]. High Power Laser and Particle Beams, 2008, 20(03): 0- .
    [15]shao shi-yong, hao lei, huang yin-bo, rao rui-zhong. Light scattering by prolate ice cylinder[J]. High Power Laser and Particle Beams, 2008, 20(07): 0- .
    [16]liang li-zhen, hu chun-dong, liu zhi-min, hu li-qun. Effect of neutral beam quality on design of window in bending system[J]. High Power Laser and Particle Beams, 2008, 20(05): 0- .
    [17]huang yin-bo, wang ying-jian. Effect of the measurement errors of atmospheric parameters on the laser propagation effects[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- .
    [18]gao chong, ma jing, tan li-ying. Angle-of-arrival fluctuation of light beam propagation in strong turbulence regime[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- .
    [19]liu jian-bin, wu jian. Light scattering model and angular spectrum of scattering intensity in fogs[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [20]wu xiao qing, wang ying jian, rao rui zhong, zeng zong yong, gong zhi ben. Experiment verification of numerical model of atmospheric optical refractive index structure parameter [J]. High Power Laser and Particle Beams, 2003, 15(02): 0- .
  • Cited by

    Periodical cited type(5)

    1. 董大鹏,于信,汪逸群,潘国涛,白素平. 0.05~0.1 MPa宽气压环境下校准光源光学系统设计. 光学精密工程. 2023(08): 1124-1135 .
    2. 王华,王玲维,黄汉云. 基于大数据的低照度微弱点目标激光成像方法. 激光杂志. 2023(09): 182-187 .
    3. 陶宗慧,刘唯奇,陈亚楠,倪小龙,娄岩,刘显著,姜会林. 大气信道激光通信系统光束偏振特性. 兵工学报. 2022(03): 481-488 .
    4. 王姝懿,刘智,林鹏,刘树通,刘艺. 基于液晶空间光调制器的激光束散角控制技术. 液晶与显示. 2022(11): 1430-1438 .
    5. 李伟,朱敏,左常玲. 低信噪比环境下光斑图像信号的定位优化研究. 重庆科技学院学报(自然科学版). 2022(05): 70-74 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.4 %FULLTEXT: 15.4 %META: 82.4 %META: 82.4 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.1 %其他: 4.1 %其他: 0.6 %其他: 0.6 %China: 1.1 %China: 1.1 %Kao-sung: 0.1 %Kao-sung: 0.1 %Saitama: 0.2 %Saitama: 0.2 %Seattle: 0.0 %Seattle: 0.0 %Taichung: 0.0 %Taichung: 0.0 %United States: 0.2 %United States: 0.2 %[]: 0.5 %[]: 0.5 %上海: 1.8 %上海: 1.8 %中山: 0.0 %中山: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %佛山: 0.2 %佛山: 0.2 %保定: 0.0 %保定: 0.0 %北京: 16.0 %北京: 16.0 %十堰: 0.1 %十堰: 0.1 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 0.2 %南京: 0.2 %南宁: 0.0 %南宁: 0.0 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %厦门: 0.0 %厦门: 0.0 %台州: 0.2 %台州: 0.2 %合肥: 0.0 %合肥: 0.0 %吉林: 0.0 %吉林: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %四平: 0.0 %四平: 0.0 %埃森: 0.0 %埃森: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.1 %天津: 0.1 %太原: 0.2 %太原: 0.2 %宁波: 0.1 %宁波: 0.1 %安康: 0.0 %安康: 0.0 %宣城: 0.1 %宣城: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 1.1 %张家口: 1.1 %徐州: 0.0 %徐州: 0.0 %德里: 0.1 %德里: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 0.1 %成都: 0.1 %扬州: 0.3 %扬州: 0.3 %新乡: 0.0 %新乡: 0.0 %无锡: 0.1 %无锡: 0.1 %晋城: 0.1 %晋城: 0.1 %普洱: 0.0 %普洱: 0.0 %景德镇: 0.0 %景德镇: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.1 %杭州: 1.1 %武汉: 0.4 %武汉: 0.4 %沃思堡: 0.0 %沃思堡: 0.0 %沈阳: 0.0 %沈阳: 0.0 %深圳: 0.4 %深圳: 0.4 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %漯河: 0.8 %漯河: 0.8 %烟台: 0.0 %烟台: 0.0 %石家庄: 0.3 %石家庄: 0.3 %秦皇岛: 0.1 %秦皇岛: 0.1 %绵阳: 0.0 %绵阳: 0.0 %罗奥尔凯埃: 0.1 %罗奥尔凯埃: 0.1 %芒廷维尤: 17.5 %芒廷维尤: 17.5 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.1 %苏州: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 44.5 %西宁: 44.5 %西安: 0.6 %西安: 0.6 %西雅图: 0.0 %西雅图: 0.0 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.8 %运城: 0.8 %郑州: 0.6 %郑州: 0.6 %重庆: 0.1 %重庆: 0.1 %铜陵: 0.1 %铜陵: 0.1 %长春: 1.2 %长春: 1.2 %长沙: 0.4 %长沙: 0.4 %长治: 0.0 %长治: 0.0 %阳泉: 0.1 %阳泉: 0.1 %香港: 0.1 %香港: 0.1 %其他其他ChinaKao-sungSaitamaSeattleTaichungUnited States[]上海中山临汾丹东佛山保定北京十堰华盛顿州南京南宁博阿努瓦厦门台州合肥吉林呼和浩特哈尔滨哥伦布嘉兴四平埃森大连天津太原宁波安康宣城广州张家口徐州德里惠州成都扬州新乡无锡晋城普洱景德镇朝阳杭州武汉沃思堡沈阳深圳温州湖州漯河烟台石家庄秦皇岛绵阳罗奥尔凯埃芒廷维尤芝加哥苏州衢州西宁西安西雅图贵阳运城郑州重庆铜陵长春长沙长治阳泉香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article views (1834) PDF downloads(122) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return