Volume 32 Issue 10
Sep.  2020
Turn off MathJax
Article Contents
Liu Cheng, Lei Jiehong. Adsorption behavior of water molecules on the surface of lithium hydride[J]. High Power Laser and Particle Beams, 2020, 32: 102001. doi: 10.11884/HPLPB202032.200217
Citation: Liu Cheng, Lei Jiehong. Adsorption behavior of water molecules on the surface of lithium hydride[J]. High Power Laser and Particle Beams, 2020, 32: 102001. doi: 10.11884/HPLPB202032.200217

Adsorption behavior of water molecules on the surface of lithium hydride

doi: 10.11884/HPLPB202032.200217
  • Received Date: 2020-07-26
  • Rev Recd Date: 2020-09-03
  • Publish Date: 2020-09-29
  • The theoretical analysis method is used to calculate the adsorption behavior of water molecules on the surface of lithium hydride, and analyze the influence of surface modification of lithium hydride on its hydrophobic performance. The results show that after constructing groove structure and columnar structure on LiH-111 surface and LiH-100 surface, the adsorption force to water molecules of the modified surface is stronger than that of the complete surface, indicating that the introduction of surface microstructure does change the potential energy distribution. There is a superposition of potential energy at the intersection of the walls, which strengthens the ability to adsorb water molecules, but does not cause changes in the hydrophilic properties of the surface. Water molecules can be stably adsorbed on the perfect LiH (001) surface, and its dissociation energy barrier is only 0.386 eV. This dissociation reaction can be carried out at room temperature. Water molecules are easily dissociated on the LiH surface with structural defects, which is the fundamental reason why LiH decomposes easily in a certain humidity air and water environment.
  • loading
  • [1]
    Haertling C, Hanrahan R J, Smith R. A literature review of reactions and kinetics of lithium hydride hydrolysis[J]. Journal of Nuclear Materials, 2006, 349(1/2): 195-233.
    [2]
    Chen P, Xiong Z, Luo J, et al. Interaction between lithium amide and lithium hydride[J]. Journal of Physical Chemistry B, 2003, 107(39): 10967-10970. doi: 10.1021/jp034149j
    [3]
    Kojima Y, Kawai Y, Kimbara M, et al. Hydrogen generation by hydrolysis reaction of lithium borohydride[J]. International Journal of Hydrogen Energy, 2004, 29(12): 1213-1217. doi: 10.1016/j.ijhydene.2003.12.009
    [4]
    Stober, K. J, Cantwell B J, Otaibi R A. Hypergolic ignition of lithium–aluminum–hydride-doped paraffin wax and nitric acid[J]. Journal of Propulsion and Power, 2020, 36(3): 435-445. doi: 10.2514/1.B37425
    [5]
    Houk K N, Rondan N G, Schleyer P V, et al. Transition structures for additions of lithium hydride and methyllithium to ethylene and acetylene[J]. Journal of the American Chemical Society, 1985, 107(9): 2821-2823. doi: 10.1021/ja00295a053
    [6]
    Kang X, Fang Z, Kong L, et al. Ammonia borane destabilized by lithium hydride: an advanced on-board hydrogen storage material[J]. Advanced Materials, 2008, 20(14): 2756-2759. doi: 10.1002/adma.200702958
    [7]
    Weber G, Sciora E, Guichard J, et al. New insight on the lithium hydride–water vapor reaction system[J]. International Journal of Hydrogen Energy, 2018, 43(50): 22557-22567. doi: 10.1016/j.ijhydene.2018.10.089
    [8]
    Dovesi R, Ermondi C, Ferrero E, et al. Hartree-Fock study of lithium hydride with the use of a polarizable basis set[J]. Physical Review B, 1984, 29(6): 3591-3600. doi: 10.1103/PhysRevB.29.3591
    [9]
    胡玉坤, 丁静, 彭晓峰, 等. 锂离子交换ZSM-5型分子筛中水分子吸附特性的分子模拟[J]. 硅酸盐学报, 2007(9):1247-1252. (Hu Yukun, Ding Jing, Peng Xiaofeng, et al. Molecular simultion of characteristics for water adsorption on ZSM-5 type zeolite doped by lithium ion[J]. Journal of the Chinese Ceramic Society, 2007(9): 1247-1252 doi: 10.3321/j.issn:0454-5648.2007.09.022
    [10]
    吕岩, 王涛, 马卫华. 基于密度泛函理论研究水在磷酸锂(100)表面的吸附[J]. 广州化工, 2016, 44(9):1-4. (Lü Yan, Wang Tao, Ma Weihua. Adsorption of water on Li3PO4 (100) surface from density functional theory[J]. Guangzhou Chemical Industry, 2016, 44(9): 1-4 doi: 10.3969/j.issn.1001-9677.2016.09.001
    [11]
    王林林, 朱灵燕, 刘跃龙, 等. 混合捕收剂在锂云母表面吸附行为的分子动力学模拟研究[J]. 有色金属(选矿部分), 2019(2):108-114. (Wang Linlin, Zhu Lingyan, Liu Yuelong, et al. Molecular dynamics simulation study on adsorption behavior of mixed collector on lithium mica surface[J]. Nonferrous Metals Mineral Processing Section, 2019(2): 108-114
    [12]
    李璐, 李奕, 郭欣, 等. 水在HfO2(111)和(110)表面的吸附与解离[J]. 物理化学学报, 2013(5):61-69. (Li Lu, Li Yi, Guo Xin, et al. Adsorption and dissociation of water on HfO2(111) and (110) surfaces[J]. Acta Physico-Chimica Sinica, 2013(5): 61-69
    [13]
    刘够生, 宋兴福, 汪瑾, 等. 水分子在MoO3原子簇模型表面吸附的密度泛函研究[J]. 分子催化, 2005, 19(2):136-140. (Liu Gousheng, Song Xingfu, Wang Jin, et al. Density functional theoretical study of water molecular adsorption on the surface of MoO3 with the cluster model[J]. Journal of Molecular Catalysis, 2005, 19(2): 136-140 doi: 10.3969/j.issn.1001-3555.2005.02.012
    [14]
    杜佳, 闵凡飞, 张明旭, 等. 水分子在铵伊利石表面吸附的密度泛函研究[J]. 中国矿业大学学报, 2017, 46(6):1349-1356. (Du Jia, Min Fanfei, Zhang Mingxu, et al. Mechanism of H2O adsorption on ammonium-illite surface based on density functional theory[J]. Journal of China University of Mining & Technology, 2017, 46(6): 1349-1356
    [15]
    薛严冰, 唐祯安, 孙伟民. 水分子在SnO2(110)表面吸附特性的密度泛函计算[J]. 大连交通大学学报, 2012, 33(5):93-96. (Xue Yanbing, Tang Zhen’an, Sun Weimin. Density functional calculation of properties of water molecule adsorption on SnO2 (110) surface[J]. Journal of Dalian Jiaotong University, 2012, 33(5): 93-96 doi: 10.3969/j.issn.1673-9590.2012.05.022
    [16]
    张瑶, 李照兵, 张鑫, 等. 水分子在Bi(111)表面上的吸附和自组装[J]. 中国科学(化学), 2016, 46(4):389-393. (Zhang Yao, Li Zhaobing, Zhang Xin, et al. Adsorption and self-assembly of water molecules on Bi (111)[J]. Scientia Sinica(Chimica), 2016, 46(4): 389-393
    [17]
    付纯鹤, 卢辉丽, 孙少瑞. 密度泛函理论方法研究6H-SiC(0001)表面对氧分子和水分子的吸附[J]. 化学物理学报, 2019(4):451-456. (Fu Chunhe, Lu Huili, Sun Shaorui. Density functional theory study for adsorption of oxygen and water molecules on 6H-SiC (0001) surface[J]. Chinese Journal of Chemical Physics, 2019(4): 451-456
    [18]
    赵红华, 江舒棋, 葛源源, 等. 不同阳离子基蒙脱石吸附水分子的分子动力学模拟分析[J]. 中国科学:技术科学, 2019, 49(6):703-715. (Zhao Honghua, Jiang Shuqi, Ge Yuanyuan, et al. Molecular dynamics simulation of water molecules adsorption by different cations based montmorillonite[J]. Scientia Sinica(Technologica), 2019, 49(6): 703-715
    [19]
    Oshikiri M, Boero M. Water molecule adsorption properties on the BiVO4 (100) surface[J]. Journal of Physical Chemistry B, 2006, 110(18): 9188-9194. doi: 10.1021/jp0555100
    [20]
    Kohtani M, Breaux G A, Jarrold M F, et al. Water molecule adsorption on protonated dipeptides[J]. Journal of the American Chemical Society, 2004, 126(4): 1206-1213. doi: 10.1021/ja0359557
    [21]
    Rangel E, Ruizchavarria G, Magana L F, et al. Water molecule adsorption on a titanium–graphene system with high metal coverage[J]. Carbon, 2009, 47(2): 531-533. doi: 10.1016/j.carbon.2008.11.037
    [22]
    Pang Z Q, Zhang Y, Rong Z, et al. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy[J]. Acta Physica Sinica, 2016, 65: 226801.
    [23]
    Wungu T D, Agusta M K, Saputro A G, et al. First principles calculation on the adsorption of water on lithium-montmorillonite (Li-MMT)[J]. Phys Condens Matter, 2012, 24: 475506. doi: 10.1088/0953-8984/24/47/475506
    [24]
    Wang C, Zhang K, Song P, et al. First-principles study of nitrogen adsorption and dissociation on PuH2 (111) surface[J]. Molecules, 2020, 25(8): 1891-1903. doi: 10.3390/molecules25081891
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)

    Article views (1566) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return