Liu Huilan, Tang Yichuang, Zhi Yinzhou, et al. Parameters analysis of triangular wave modulation in resonator micro optic gyro[J]. High Power Laser and Particle Beams, 2015, 27: 024148. doi: 10.11884/HPLPB201527.024148
Citation: Yang Fuxiang, Dang Fangchao, He Juntao, et al. Simulation and design of novel Ku-band radial-line relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103006. doi: 10.11884/HPLPB202032.200227

Simulation and design of novel Ku-band radial-line relativistic klystron amplifier

doi: 10.11884/HPLPB202032.200227
  • Received Date: 2020-08-01
  • Rev Recd Date: 2020-09-08
  • Publish Date: 2020-09-29
  • High-frequency relativistic klystron amplifier is one of the research hotspots in the field of high power microwave in recent years, and its development is mainly limited by mode competition, phase jitter and low efficiency. This paper presents the design of a novel Ku-band radial-line klystron amplifier, which consists of an input cavity, two groups of double-gap bunching cavities and a three-gap extraction cavity. By comparing the coupling coefficient of single-gap bunching cavity with that of non-uniform double-gap bunching cavities, it is proved that non-uniform double-gap bunching cavity has stronger modulation ability to the electron beam. The working mode of non-uniform double-gap bunching cavity with a TEM reflector is TM01-π mode, which has a large Q value and benefit from energy isolation between resonant cavities. When the injection power is only 10 kW, the modulation depth of fundamental current is about 110% by cascading two groups of double-gap cavities. PIC simulationshows that this device has high efficiency. When electron beam voltage is 400 kV, beam current is 5 kA and magnetic field is only 0.4 T, high power microwaves with frequency of 14.25 GHz and output power of 825 MW are obtained.
  • [1]
    Zhang Jiande, Ge Xingjun, Zhang Jun, et al. Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT[J]. Matter & Radiation at Extremes, 2016, 1(3): 163-178. doi: 10.1016/j.mre.2016.04.001
    [2]
    Zhang Jun, Zhang Dian, Fan Yuwei, et al. Progress in narrowband high-power microwave sources[J]. Physics of Plasmas, 2020, 27: 010501. doi: 10.1063/1.5126271
    [3]
    Benford J, Swegle J A, Schamiloglu E. 高功率微波[M]. 国防工业出版社, 2008.

    Benford J, Swegle J A, Schamiloglu E. High power microwave[M]. Beijing: National Defense Industry Press, 2008
    [4]
    Zhang Jun, Zhang Wei, Zhang Dian, et al. Suppression of the higher-order azimuthal mode competition in an X-band triaxial klystron amplifier with a slotted coaxial waveguide[J]. IEEE Trans Electron Devices, 2020, 67(3): 1215-1220. doi: 10.1109/TED.2019.2963567
    [5]
    Zhou Yunxiao, Ju Jinchuan, Zhang Jun, et al. Design and optimization of reflectors in a relativistic triaxial klystron amplifier[J]. IEEE Trans Plasma Science, 2020, 48(6): 1923-1929. doi: 10.1109/TPS.2020.2980084
    [6]
    张威. X波段高功率高效率相对论三轴速调管放大器研究[D]. 长沙: 国防科技大学, 2019.

    Zhang Wei. Investigation of an X-band high-power and high-efficiency relativistic triaxial klystron amplifier[D]. Changsha: National University of Defense Technology, 2019
    [7]
    Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of the phase stability of an X-band long pulse multibeam relativistic klystron amplifier[J]. Phys Plasmas, 2016, 23: 093110. doi: 10.1063/1.4962760
    [8]
    Ju Jinchuan, Zhang Jun, Qi Zumin, et al. Towards coherent combining of X-band high power microwaves: Phase-locked long pulse radiations by a relativistic triaxial klystron amplifier[J]. Sci Rep, 2016, 6: 30657. doi: 10.1038/srep30657
    [9]
    刘振帮, 雷禄容, 黄华, 等. X波段长脉冲多注相对论速调管放大器杂模振荡抑制[J]. 强激光与粒子束, 2016, 28:033002. (Liu Zhenbang, Lei Lurong, Huang Hua, et al. Suppression of parasitic oscillation in X-band long pulse multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28: 033002 doi: 10.11884/HPLPB201628.033002
    [10]
    戚祖敏. X波段三轴相对论速调管放大器研究[D]. 长沙: 国防科技大学, 2015.

    Qi Zumin. Investigation of an X-band triaxial relativistic klystron amplifier[D]. Changsha: National University of Defense Technology, 2015
    [11]
    Liu Zhenbang, Huang Hua, Lei Lurong, et al. Investigation of an X-band gigawatts long pulse multi-beam relativistic klystron amplifier[J]. Phys Plasmas, 2015, 22: 093105. doi: 10.1063/1.4929920
    [12]
    Wu Y, Li Z, Xie H, et al. An S-band high gain relativistic klystron amplifier with high phase stability[J]. Phys Plasmas, 2014, 21: 113107. doi: 10.1063/1.4901811
    [13]
    袁欢, 黄华, 何琥, 等. S波段相对论速调管放大器相位稳定性的优化设计及实验研究[J]. 强激光与粒子束, 2017, 29:113001. (Yuan Huan, Huang Hua, He Hu, et al. Optimization and experimental study of phase characteristics of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2017, 29: 113001 doi: 10.11884/HPLPB201729.170133
    [14]
    党方超. Ku波段径向线相对论速调管研究[D]. 长沙: 国防科技大学, 2017.

    Dang Fangchao. Research on Ku-band radial relativistic klystron[D]. Changsha: National University of Defense Technology, 2017
    [15]
    Dang Fangchao, Zhang Xiaoping, Zhong Huihuang, et al. A high efficiency Ku-band radial line relativistic klystron amplifier[J]. Phys Plasmas, 2016, 23: 073113. doi: 10.1063/1.4958810
    [16]
    Dang Fangchao, Zhang Xiaoping, Zhong Huihuang, et al. Simulation investigation of a Ku-band radial line oscillator operating at low guiding magnetic field[J]. Phys Plasmas, 2014, 21: 063307. doi: 10.1063/1.4886150
  • Relative Articles

    [1]Han Caozheng, Wang Wubin, Zhao Wei, Chen Ruitao, Ma Xingwang, Li Yanling, Bai Jiaqi. Protection design of BDS/GPS to resist high power microwave[J]. High Power Laser and Particle Beams, 2024, 36(12): 123001. doi: 10.11884/HPLPB202436.240219
    [2]Zhang Jingqi, Qin Feng, Gao Yuan, Zhong Shouhong, Wang Zhen. Design and experiment of wideband electromagnetic pulse protection circuit with effective suppression capability[J]. High Power Laser and Particle Beams, 2023, 35(2): 023004. doi: 10.11884/HPLPB202335.220257
    [3]Fan Yuqing, Cheng Erwei, Wei Ming, Zhang Qinglong, Chen Yazhou. Analysis on the interference effect of electrostatic discharge of GNSS receiver on aircraft[J]. High Power Laser and Particle Beams, 2019, 31(12): 123201. doi: 10.11884/HPLPB201931.190268
    [4]Xie Xining, Hu Xiaofeng. Design of an electrostatic discharge simulator[J]. High Power Laser and Particle Beams, 2019, 31(6): 063205. doi: 10.11884/HPLPB201931.190057
    [5]Xu Xiaoying, Shu Xiaorong, Liu Pengyu, Gan Yingjie, Zhang Chengming. Experimental characteristics of surface discharging for air electrostatic discharge on display[J]. High Power Laser and Particle Beams, 2019, 31(6): 063203. doi: 10.11884/HPLPB201931.190035
    [6]Wang Xiangyu, Fan Yajun, Qiao Hanqing, Lu Yanlei, Zhu Yufeng, Xia Wenfeng, Zhang Xingjia. Design of a coaxial Marx generator and field-circuit co-simulation[J]. High Power Laser and Particle Beams, 2019, 31(11): 115001. doi: 10.11884/HPLPB201931.190125
    [7]Wang Yajie, He Pengjun, Jing Xiaopeng, Tie Weihao, Xie Jiangyuan, Zhao Chengguang. Simulation and calculation of pulsed power source based on drift step recovery diode switching[J]. High Power Laser and Particle Beams, 2018, 30(9): 095005. doi: 10.11884/HPLPB201830.170398
    [8]Wu Huancheng, Hu Jinguang, Zhong Longquan, Lin Jiangchuan. Field-circuit co-simulation and experiment of electromagnetic energy selective surface[J]. High Power Laser and Particle Beams, 2017, 29(09): 093203. doi: 10.11884/HPLPB201729.170088
    [9]Zhang Xijun, Zhang Liting, Wang Shuping, Zhao Min. Effect of length of transmission line on performance test of electrostatic discharge protection device[J]. High Power Laser and Particle Beams, 2017, 29(10): 103205. doi: 10.11884/HPLPB201729.170156
    [10]Li Yong, Xie Haiyan, Yang Zhiqiang, Xia Hongfu, Xuan Chun, Wang Jianguo. Parameter extraction of transient voltage suppressor diode[J]. High Power Laser and Particle Beams, 2016, 28(03): 033202. doi: 10.11884/HPLPB201628.033202
    [11]Yang Cheng, Liu Peiguo, Liu Jibin, Zhou Dongming, Li Gaosheng. Transient response of energy selective surface[J]. High Power Laser and Particle Beams, 2013, 25(04): 1045-1049.
    [12]zhang wei, du zhengwei. Simulation of irradiation effects of high power microwave on PCB circuits[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [13]xiong ling-ling, lü bai-da. Theoretical models describing far-field intensity distributions of laser diode[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [14]qi shu-feng, liu shang-he, liu hong-bing, yang jie. Latent failure of 2SC3356 caused by electrostatic discharge[J]. High Power Laser and Particle Beams, 2007, 19(04): 0- .
    [15]he qi-yuan, liu shang-he, xu xiao-ying, wang shao-guang, chen jing-ping. Influence of approaching speed on air electrostatic discharge[J]. High Power Laser and Particle Beams, 2007, 19(03): 0- .
    [16]yang jie, wang chang-he, liu shang-he. Electromagnetic pulse sensitive ports of micro-wave low-noise transistors[J]. High Power Laser and Particle Beams, 2007, 19(01): 0- .
    [17]quan lin, zhang yong-min, tu jing, chen zhi-hua, lai ding-guo, fan ya-jun, shao hao. Stability of pulse X-ray spectrum field generated by intense diode[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [18]bi zeng-jun, sheng song-lin, sun chi, liu shang-he. A numerical model of electromagnetic fields generated by electrostatic discharge spark[J]. High Power Laser and Particle Beams, 2003, 15(06): 0- .
    [19]hou min-sheng, wang shu-ping. Simulator of electromagnetism pulse produced during electrostatic discharge[J]. High Power Laser and Particle Beams, 2002, 14(02): 0- .
  • Cited by

    Periodical cited type(3)

    1. 王淼,李嘉豪,汤浩,郭亚. ESD保护电路在HDMI板级信号完整性中的影响分析及其布局优化研究. 现代电子技术. 2024(08): 68-74 .
    2. 付路,阎照文,刘玉竹,苏丽轩. 基于分段线性模型针对传输线脉冲瞬态干扰信号的芯片协同防护设计方法. 电子与信息学报. 2023(09): 3263-3271 .
    3. 付路,阎照文,刘玉竹,苏丽轩. 芯片传导瞬态电磁干扰下的防护特性研究. 安全与电磁兼容. 2022(04): 38-42+66 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.6 %FULLTEXT: 20.6 %META: 76.2 %META: 76.2 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.6 %其他: 4.6 %China: 0.1 %China: 0.1 %Hamtramck: 0.2 %Hamtramck: 0.2 %India: 0.1 %India: 0.1 %United Kingdom: 0.1 %United Kingdom: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.2 %[]: 0.2 %上海: 0.3 %上海: 0.3 %中山: 0.2 %中山: 0.2 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %伊犁: 0.1 %伊犁: 0.1 %北京: 22.2 %北京: 22.2 %台州: 0.4 %台州: 0.4 %咸阳: 0.1 %咸阳: 0.1 %安康: 0.2 %安康: 0.2 %巴拿马城: 0.1 %巴拿马城: 0.1 %布鲁塞尔: 0.1 %布鲁塞尔: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.4 %常德: 0.4 %广州: 0.1 %广州: 0.1 %弗吉: 0.1 %弗吉: 0.1 %张家口: 0.5 %张家口: 0.5 %成都: 0.6 %成都: 0.6 %新乡: 0.3 %新乡: 0.3 %昆明: 0.9 %昆明: 0.9 %普洱: 0.1 %普洱: 0.1 %杭州: 1.9 %杭州: 1.9 %桂林: 0.1 %桂林: 0.1 %桃园: 0.1 %桃园: 0.1 %武汉: 0.1 %武汉: 0.1 %江门: 0.5 %江门: 0.5 %深圳: 11.0 %深圳: 11.0 %湖州: 0.4 %湖州: 0.4 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %红河: 0.1 %红河: 0.1 %约翰内斯堡: 0.1 %约翰内斯堡: 0.1 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 8.7 %芒廷维尤: 8.7 %芝加哥: 0.4 %芝加哥: 0.4 %衢州: 0.6 %衢州: 0.6 %西宁: 40.1 %西宁: 40.1 %西安: 0.3 %西安: 0.3 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %郑州: 1.0 %郑州: 1.0 %都伯林: 0.2 %都伯林: 0.2 %重庆: 0.1 %重庆: 0.1 %长沙: 0.1 %长沙: 0.1 %长治: 0.2 %长治: 0.2 %雅安: 0.1 %雅安: 0.1 %首尔: 0.2 %首尔: 0.2 %马鞍山: 0.1 %马鞍山: 0.1 %其他ChinaHamtramckIndiaUnited KingdomUnited States[]上海中山临汾丹东丽水伊犁北京台州咸阳安康巴拿马城布鲁塞尔常州常德广州弗吉张家口成都新乡昆明普洱杭州桂林桃园武汉江门深圳湖州福州秦皇岛红河约翰内斯堡绵阳芒廷维尤芝加哥衢州西宁西安贵阳运城连云港郑州都伯林重庆长沙长治雅安首尔马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (1394) PDF downloads(85) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return