Chen Zhiqiang, Xie Linshen, Jia Wei, et al. Development of a 3 MV transfer capacitor used in an electromagnetic pulse simulator[J]. High Power Laser and Particle Beams, 2021, 33: 095001. doi: 10.11884/HPLPB202133.210195
Citation: Yang Fuxiang, Dang Fangchao, He Juntao, et al. Simulation and design of novel Ku-band radial-line relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103006. doi: 10.11884/HPLPB202032.200227

Simulation and design of novel Ku-band radial-line relativistic klystron amplifier

doi: 10.11884/HPLPB202032.200227
  • Received Date: 2020-08-01
  • Rev Recd Date: 2020-09-08
  • Publish Date: 2020-09-29
  • High-frequency relativistic klystron amplifier is one of the research hotspots in the field of high power microwave in recent years, and its development is mainly limited by mode competition, phase jitter and low efficiency. This paper presents the design of a novel Ku-band radial-line klystron amplifier, which consists of an input cavity, two groups of double-gap bunching cavities and a three-gap extraction cavity. By comparing the coupling coefficient of single-gap bunching cavity with that of non-uniform double-gap bunching cavities, it is proved that non-uniform double-gap bunching cavity has stronger modulation ability to the electron beam. The working mode of non-uniform double-gap bunching cavity with a TEM reflector is TM01-π mode, which has a large Q value and benefit from energy isolation between resonant cavities. When the injection power is only 10 kW, the modulation depth of fundamental current is about 110% by cascading two groups of double-gap cavities. PIC simulationshows that this device has high efficiency. When electron beam voltage is 400 kV, beam current is 5 kA and magnetic field is only 0.4 T, high power microwaves with frequency of 14.25 GHz and output power of 825 MW are obtained.
  • [1]
    Zhang Jiande, Ge Xingjun, Zhang Jun, et al. Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT[J]. Matter & Radiation at Extremes, 2016, 1(3): 163-178. doi: 10.1016/j.mre.2016.04.001
    [2]
    Zhang Jun, Zhang Dian, Fan Yuwei, et al. Progress in narrowband high-power microwave sources[J]. Physics of Plasmas, 2020, 27: 010501. doi: 10.1063/1.5126271
    [3]
    Benford J, Swegle J A, Schamiloglu E. 高功率微波[M]. 国防工业出版社, 2008.

    Benford J, Swegle J A, Schamiloglu E. High power microwave[M]. Beijing: National Defense Industry Press, 2008
    [4]
    Zhang Jun, Zhang Wei, Zhang Dian, et al. Suppression of the higher-order azimuthal mode competition in an X-band triaxial klystron amplifier with a slotted coaxial waveguide[J]. IEEE Trans Electron Devices, 2020, 67(3): 1215-1220. doi: 10.1109/TED.2019.2963567
    [5]
    Zhou Yunxiao, Ju Jinchuan, Zhang Jun, et al. Design and optimization of reflectors in a relativistic triaxial klystron amplifier[J]. IEEE Trans Plasma Science, 2020, 48(6): 1923-1929. doi: 10.1109/TPS.2020.2980084
    [6]
    张威. X波段高功率高效率相对论三轴速调管放大器研究[D]. 长沙: 国防科技大学, 2019.

    Zhang Wei. Investigation of an X-band high-power and high-efficiency relativistic triaxial klystron amplifier[D]. Changsha: National University of Defense Technology, 2019
    [7]
    Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of the phase stability of an X-band long pulse multibeam relativistic klystron amplifier[J]. Phys Plasmas, 2016, 23: 093110. doi: 10.1063/1.4962760
    [8]
    Ju Jinchuan, Zhang Jun, Qi Zumin, et al. Towards coherent combining of X-band high power microwaves: Phase-locked long pulse radiations by a relativistic triaxial klystron amplifier[J]. Sci Rep, 2016, 6: 30657. doi: 10.1038/srep30657
    [9]
    刘振帮, 雷禄容, 黄华, 等. X波段长脉冲多注相对论速调管放大器杂模振荡抑制[J]. 强激光与粒子束, 2016, 28:033002. (Liu Zhenbang, Lei Lurong, Huang Hua, et al. Suppression of parasitic oscillation in X-band long pulse multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28: 033002 doi: 10.11884/HPLPB201628.033002
    [10]
    戚祖敏. X波段三轴相对论速调管放大器研究[D]. 长沙: 国防科技大学, 2015.

    Qi Zumin. Investigation of an X-band triaxial relativistic klystron amplifier[D]. Changsha: National University of Defense Technology, 2015
    [11]
    Liu Zhenbang, Huang Hua, Lei Lurong, et al. Investigation of an X-band gigawatts long pulse multi-beam relativistic klystron amplifier[J]. Phys Plasmas, 2015, 22: 093105. doi: 10.1063/1.4929920
    [12]
    Wu Y, Li Z, Xie H, et al. An S-band high gain relativistic klystron amplifier with high phase stability[J]. Phys Plasmas, 2014, 21: 113107. doi: 10.1063/1.4901811
    [13]
    袁欢, 黄华, 何琥, 等. S波段相对论速调管放大器相位稳定性的优化设计及实验研究[J]. 强激光与粒子束, 2017, 29:113001. (Yuan Huan, Huang Hua, He Hu, et al. Optimization and experimental study of phase characteristics of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2017, 29: 113001 doi: 10.11884/HPLPB201729.170133
    [14]
    党方超. Ku波段径向线相对论速调管研究[D]. 长沙: 国防科技大学, 2017.

    Dang Fangchao. Research on Ku-band radial relativistic klystron[D]. Changsha: National University of Defense Technology, 2017
    [15]
    Dang Fangchao, Zhang Xiaoping, Zhong Huihuang, et al. A high efficiency Ku-band radial line relativistic klystron amplifier[J]. Phys Plasmas, 2016, 23: 073113. doi: 10.1063/1.4958810
    [16]
    Dang Fangchao, Zhang Xiaoping, Zhong Huihuang, et al. Simulation investigation of a Ku-band radial line oscillator operating at low guiding magnetic field[J]. Phys Plasmas, 2014, 21: 063307. doi: 10.1063/1.4886150
  • Relative Articles

    [1]Wang Xiangyu, Lu Yanlei, Zhu Yufeng, Fang Xu, Qiao Hanqing, Zhang Xingjia. Design and development of compact high power subnanosecond pulse compression device[J]. High Power Laser and Particle Beams, 2023, 35(2): 025006. doi: 10.11884/HPLPB202335.220254
    [2]Lian Yudong, Wang Yuhe, Zhang Yuqin, Han Shiwei, Yu Yang, Qi Xuan, Luan Nannan, Bai Zhenxu, Wang Yulei, Lü Zhiwei. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33(5): 051001. doi: 10.11884/HPLPB202133.210006
    [3]Xiong Zhengfeng, Ning Hui, Chen Huaibi, Cheng Cheng. Design and experiment of microwave pulse compressor with adjustable coupling coefficient[J]. High Power Laser and Particle Beams, 2018, 30(7): 073001. doi: 10.11884/HPLPB201830.170469
    [4]Zhang Xingjia, Lu Yanlei, Fan Yajun, Shi Lei, Xia Wenfeng, Qiao Hanqing. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29(11): 115002. doi: 10.11884/HPLPB201729.170101
    [5]Shi Lei, Zhu Yufeng, Lu Yanlei, Xia Wenfeng, Qiao Hanqing, Yi Chaolong, Fan Yajun. Pulse compression based on pulse forming line charging techonlogy[J]. High Power Laser and Particle Beams, 2015, 27(06): 065003. doi: 10.11884/HPLPB201527.065003
    [6]Zhu Yufeng, Shi Lei, Fan Yajun, Xia Wenfeng. Application of forming-line pulse-compression in ultra-wide-spectrum technology[J]. High Power Laser and Particle Beams, 2013, 25(09): 2448-2452. doi: 10.3788/HPLPB20132509.2448
    [7]qian guolin, wu jianhong, li chaoming. Laser pulse pattern influenced by mosaic grating gap[J]. High Power Laser and Particle Beams, 2011, 23(12): 5-6.
    [8]liang qinjin, shi xiaoyan, pan wenwu. High voltage semiconductor fast ionization device and its properties of pulse compression[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- .
    [9]jiang weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [10]guo qi, lü zhiwei, zhu chengyu. High-quality pulse shape realized in two-step stimulated Brillouin scattering pulse compression system[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- .
    [11]gao zhixing, tang xiuzhang, zhang haifeng, xiang yihuai. Excimer laser pulse compressed with pulse feedback[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- .
    [12]cheng xin-bing, liu jin-liang, chen zhen, yin yi, feng jia-huai. Design and primary experiment of high voltage long-life gas spark switch[J]. High Power Laser and Particle Beams, 2008, 20(10): 0- .
    [13]zhu zhong-ming, wang xu-ben, zhang shuang-shi. Study of exploration capability of pseudo-random code UWB short pulse[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- .
    [14]zhang zhi-qiang, fang jin-yong, hao wen-xi, qiu shi, ning hui. Numerical simulation and optimization design of X-band pulse compression equipment[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
    [15]liu wen-bing, zhu qi-hua, feng guo-ying, wang xiao, wang fang. Effects of non-parallel grating pair on pulse space-time profiles[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- .
    [16]xie su-long, meng fan-bao, ma hong-ge. Effects of gas switch on power gain in pulse compressed system[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- .
    [17]zhang wei, wu jian-hong, li chao-ming. Effect of wavefront aberration of grating on pulse compression[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- .
    [18]wang chao, lzhi-wei, he wei-ming. Picosecond pulse generation by stimulated Brillouin scattering compressor[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- .
    [19]ning hui, fang jin-yong, li ping, liu jing-yue, liu guo-zhi, xiao li-lin, tong de-chun, lin yu-zheng, . Experiment research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- .
  • Cited by

    Periodical cited type(5)

    1. 陈俊宏,肖东华,熊玉珍,王英翘,陈小昌,宣伟民,戢洋. kA级双阶梯脉冲电源方案设计与分析. 强激光与粒子束. 2024(02): 90-96 . 本站查看
    2. 贾伟,陈志强,吴伟,郭帆,谢霖燊,吴刚,梅锴盛,程乐,肖晶,孙楚昱,朱湘琴,陈伟. 3.8MV快前沿电磁脉冲模拟器脉冲驱动源研制. 现代应用物理. 2024(01): 112-117 .
    3. 吴刚,贾伟,王海洋,谢霖燊,陈志强,郭帆,吴伟,冯寒亮. 高空核电磁脉冲模拟器研制进展. 中国科学:物理学 力学 天文学. 2023(07): 97-109 .
    4. 赵亮,李锐,程杰,邱旭东,喻斌雄,尚蔚,高明珠. 脉冲功率装置中混合绝缘结构设计方法. 现代应用物理. 2022(04): 109-115+122 .
    5. 邓珀昆,林楷宣,罗秋燕,龙井华,王东,雷云飞,黄峻堃,王勇,蔡厚智,刘进元. 基于晶闸管的大电流脉冲发生器研制. 强激光与粒子束. 2021(11): 178-183 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.1 %FULLTEXT: 16.1 %META: 80.2 %META: 80.2 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 38.1 %其他: 38.1 %其他: 0.1 %其他: 0.1 %China: 1.2 %China: 1.2 %India: 0.0 %India: 0.0 %Iran (ISLAMIC Republic Of): 0.2 %Iran (ISLAMIC Republic Of): 0.2 %Japan: 0.2 %Japan: 0.2 %Koesan: 0.0 %Koesan: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.5 %[]: 0.5 %上海: 2.9 %上海: 2.9 %东莞: 0.1 %东莞: 0.1 %中山: 0.2 %中山: 0.2 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %保定: 0.1 %保定: 0.1 %兰州: 0.3 %兰州: 0.3 %北京: 2.5 %北京: 2.5 %南京: 0.6 %南京: 0.6 %南昌: 0.2 %南昌: 0.2 %台州: 0.1 %台州: 0.1 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.0 %哈尔滨: 0.0 %哈尔科夫: 0.2 %哈尔科夫: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %商洛: 0.1 %商洛: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %圣保罗: 0.1 %圣保罗: 0.1 %大连: 0.0 %大连: 0.0 %天津: 0.1 %天津: 0.1 %奥卢: 0.1 %奥卢: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 0.2 %宣城: 0.2 %宿州: 0.1 %宿州: 0.1 %平凉: 0.2 %平凉: 0.2 %广州: 0.1 %广州: 0.1 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %张家口: 0.2 %张家口: 0.2 %成都: 0.7 %成都: 0.7 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %新奥尔良: 0.0 %新奥尔良: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.3 %昆明: 0.3 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 0.4 %杭州: 0.4 %梅州: 0.0 %梅州: 0.0 %榆林: 0.0 %榆林: 0.0 %武汉: 0.2 %武汉: 0.2 %汉中: 0.1 %汉中: 0.1 %沈阳: 0.1 %沈阳: 0.1 %法兰西岛大区: 0.3 %法兰西岛大区: 0.3 %泰州: 0.1 %泰州: 0.1 %济南: 0.1 %济南: 0.1 %淮安: 0.0 %淮安: 0.0 %深圳: 0.3 %深圳: 0.3 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %漯河: 0.1 %漯河: 0.1 %烟台: 0.0 %烟台: 0.0 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.0 %秦皇岛: 0.0 %纽瓦克: 0.0 %纽瓦克: 0.0 %绵阳: 0.3 %绵阳: 0.3 %艾因: 0.2 %艾因: 0.2 %芒廷维尤: 12.6 %芒廷维尤: 12.6 %芝加哥: 0.0 %芝加哥: 0.0 %苏州: 0.0 %苏州: 0.0 %衡水: 0.0 %衡水: 0.0 %衢州: 0.2 %衢州: 0.2 %西宁: 26.2 %西宁: 26.2 %西安: 3.2 %西安: 3.2 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.2 %贵阳: 0.2 %费利蒙: 0.0 %费利蒙: 0.0 %贺州: 0.0 %贺州: 0.0 %资阳: 0.1 %资阳: 0.1 %运城: 0.9 %运城: 0.9 %邯郸: 0.0 %邯郸: 0.0 %郑州: 1.0 %郑州: 1.0 %郴州: 0.2 %郴州: 0.2 %重庆: 0.4 %重庆: 0.4 %长春: 0.0 %长春: 0.0 %长沙: 0.3 %长沙: 0.3 %长治: 0.1 %长治: 0.1 %门尼菲: 0.2 %门尼菲: 0.2 %阳泉: 0.0 %阳泉: 0.0 %阿什本: 0.0 %阿什本: 0.0 %阿拉善盟: 0.2 %阿拉善盟: 0.2 %青岛: 0.1 %青岛: 0.1 %驻马店: 0.0 %驻马店: 0.0 %其他其他ChinaIndiaIran (ISLAMIC Republic Of)JapanKoesanUnited States[]上海东莞中山临汾丹东保定兰州北京南京南昌台州合肥呼和浩特哈尔滨哈尔科夫哥伦布商洛嘉兴圣保罗大连天津奥卢安康宣城宿州平凉广州库比蒂诺张家口成都扬州新乡新奥尔良无锡昆明晋城普洱朝阳杭州梅州榆林武汉汉中沈阳法兰西岛大区泰州济南淮安深圳温州渭南漯河烟台眉山石家庄福州秦皇岛纽瓦克绵阳艾因芒廷维尤芝加哥苏州衡水衢州西宁西安西雅图贵阳费利蒙贺州资阳运城邯郸郑州郴州重庆长春长沙长治门尼菲阳泉阿什本阿拉善盟青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (1393) PDF downloads(85) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return