Citation: | Yang Fuxiang, Dang Fangchao, He Juntao, et al. Simulation and design of novel Ku-band radial-line relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103006. doi: 10.11884/HPLPB202032.200227 |
[1] |
Zhang Jiande, Ge Xingjun, Zhang Jun, et al. Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT[J]. Matter & Radiation at Extremes, 2016, 1(3): 163-178. doi: 10.1016/j.mre.2016.04.001
|
[2] |
Zhang Jun, Zhang Dian, Fan Yuwei, et al. Progress in narrowband high-power microwave sources[J]. Physics of Plasmas, 2020, 27: 010501. doi: 10.1063/1.5126271
|
[3] |
Benford J, Swegle J A, Schamiloglu E. 高功率微波[M]. 国防工业出版社, 2008.
Benford J, Swegle J A, Schamiloglu E. High power microwave[M]. Beijing: National Defense Industry Press, 2008
|
[4] |
Zhang Jun, Zhang Wei, Zhang Dian, et al. Suppression of the higher-order azimuthal mode competition in an X-band triaxial klystron amplifier with a slotted coaxial waveguide[J]. IEEE Trans Electron Devices, 2020, 67(3): 1215-1220. doi: 10.1109/TED.2019.2963567
|
[5] |
Zhou Yunxiao, Ju Jinchuan, Zhang Jun, et al. Design and optimization of reflectors in a relativistic triaxial klystron amplifier[J]. IEEE Trans Plasma Science, 2020, 48(6): 1923-1929. doi: 10.1109/TPS.2020.2980084
|
[6] |
张威. X波段高功率高效率相对论三轴速调管放大器研究[D]. 长沙: 国防科技大学, 2019.
Zhang Wei. Investigation of an X-band high-power and high-efficiency relativistic triaxial klystron amplifier[D]. Changsha: National University of Defense Technology, 2019
|
[7] |
Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of the phase stability of an X-band long pulse multibeam relativistic klystron amplifier[J]. Phys Plasmas, 2016, 23: 093110. doi: 10.1063/1.4962760
|
[8] |
Ju Jinchuan, Zhang Jun, Qi Zumin, et al. Towards coherent combining of X-band high power microwaves: Phase-locked long pulse radiations by a relativistic triaxial klystron amplifier[J]. Sci Rep, 2016, 6: 30657. doi: 10.1038/srep30657
|
[9] |
刘振帮, 雷禄容, 黄华, 等. X波段长脉冲多注相对论速调管放大器杂模振荡抑制[J]. 强激光与粒子束, 2016, 28:033002. (Liu Zhenbang, Lei Lurong, Huang Hua, et al. Suppression of parasitic oscillation in X-band long pulse multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28: 033002 doi: 10.11884/HPLPB201628.033002
|
[10] |
戚祖敏. X波段三轴相对论速调管放大器研究[D]. 长沙: 国防科技大学, 2015.
Qi Zumin. Investigation of an X-band triaxial relativistic klystron amplifier[D]. Changsha: National University of Defense Technology, 2015
|
[11] |
Liu Zhenbang, Huang Hua, Lei Lurong, et al. Investigation of an X-band gigawatts long pulse multi-beam relativistic klystron amplifier[J]. Phys Plasmas, 2015, 22: 093105. doi: 10.1063/1.4929920
|
[12] |
Wu Y, Li Z, Xie H, et al. An S-band high gain relativistic klystron amplifier with high phase stability[J]. Phys Plasmas, 2014, 21: 113107. doi: 10.1063/1.4901811
|
[13] |
袁欢, 黄华, 何琥, 等. S波段相对论速调管放大器相位稳定性的优化设计及实验研究[J]. 强激光与粒子束, 2017, 29:113001. (Yuan Huan, Huang Hua, He Hu, et al. Optimization and experimental study of phase characteristics of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2017, 29: 113001 doi: 10.11884/HPLPB201729.170133
|
[14] |
党方超. Ku波段径向线相对论速调管研究[D]. 长沙: 国防科技大学, 2017.
Dang Fangchao. Research on Ku-band radial relativistic klystron[D]. Changsha: National University of Defense Technology, 2017
|
[15] |
Dang Fangchao, Zhang Xiaoping, Zhong Huihuang, et al. A high efficiency Ku-band radial line relativistic klystron amplifier[J]. Phys Plasmas, 2016, 23: 073113. doi: 10.1063/1.4958810
|
[16] |
Dang Fangchao, Zhang Xiaoping, Zhong Huihuang, et al. Simulation investigation of a Ku-band radial line oscillator operating at low guiding magnetic field[J]. Phys Plasmas, 2014, 21: 063307. doi: 10.1063/1.4886150
|
[1] | Wang Xiangyu, Lu Yanlei, Zhu Yufeng, Fang Xu, Qiao Hanqing, Zhang Xingjia. Design and development of compact high power subnanosecond pulse compression device[J]. High Power Laser and Particle Beams, 2023, 35(2): 025006. doi: 10.11884/HPLPB202335.220254 |
[2] | Lian Yudong, Wang Yuhe, Zhang Yuqin, Han Shiwei, Yu Yang, Qi Xuan, Luan Nannan, Bai Zhenxu, Wang Yulei, Lü Zhiwei. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33(5): 051001. doi: 10.11884/HPLPB202133.210006 |
[3] | Xiong Zhengfeng, Ning Hui, Chen Huaibi, Cheng Cheng. Design and experiment of microwave pulse compressor with adjustable coupling coefficient[J]. High Power Laser and Particle Beams, 2018, 30(7): 073001. doi: 10.11884/HPLPB201830.170469 |
[4] | Zhang Xingjia, Lu Yanlei, Fan Yajun, Shi Lei, Xia Wenfeng, Qiao Hanqing. Triple transmission line type subnanosecond pulse-compression device[J]. High Power Laser and Particle Beams, 2017, 29(11): 115002. doi: 10.11884/HPLPB201729.170101 |
[5] | Shi Lei, Zhu Yufeng, Lu Yanlei, Xia Wenfeng, Qiao Hanqing, Yi Chaolong, Fan Yajun. Pulse compression based on pulse forming line charging techonlogy[J]. High Power Laser and Particle Beams, 2015, 27(06): 065003. doi: 10.11884/HPLPB201527.065003 |
[6] | Zhu Yufeng, Shi Lei, Fan Yajun, Xia Wenfeng. Application of forming-line pulse-compression in ultra-wide-spectrum technology[J]. High Power Laser and Particle Beams, 2013, 25(09): 2448-2452. doi: 10.3788/HPLPB20132509.2448 |
[7] | qian guolin, wu jianhong, li chaoming. Laser pulse pattern influenced by mosaic grating gap[J]. High Power Laser and Particle Beams, 2011, 23(12): 5-6. |
[8] | liang qinjin, shi xiaoyan, pan wenwu. High voltage semiconductor fast ionization device and its properties of pulse compression[J]. High Power Laser and Particle Beams, 2011, 23(08): 0- . |
[9] | jiang weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- . |
[10] | guo qi, lü zhiwei, zhu chengyu. High-quality pulse shape realized in two-step stimulated Brillouin scattering pulse compression system[J]. High Power Laser and Particle Beams, 2010, 22(02): 0- . |
[11] | gao zhixing, tang xiuzhang, zhang haifeng, xiang yihuai. Excimer laser pulse compressed with pulse feedback[J]. High Power Laser and Particle Beams, 2009, 21(08): 0- . |
[12] | cheng xin-bing, liu jin-liang, chen zhen, yin yi, feng jia-huai. Design and primary experiment of high voltage long-life gas spark switch[J]. High Power Laser and Particle Beams, 2008, 20(10): 0- . |
[13] | zhu zhong-ming, wang xu-ben, zhang shuang-shi. Study of exploration capability of pseudo-random code UWB short pulse[J]. High Power Laser and Particle Beams, 2006, 18(11): 0- . |
[14] | zhang zhi-qiang, fang jin-yong, hao wen-xi, qiu shi, ning hui. Numerical simulation and optimization design of X-band pulse compression equipment[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- . |
[15] | liu wen-bing, zhu qi-hua, feng guo-ying, wang xiao, wang fang. Effects of non-parallel grating pair on pulse space-time profiles[J]. High Power Laser and Particle Beams, 2005, 17(10): 0- . |
[16] | xie su-long, meng fan-bao, ma hong-ge. Effects of gas switch on power gain in pulse compressed system[J]. High Power Laser and Particle Beams, 2005, 17(06): 0- . |
[17] | zhang wei, wu jian-hong, li chao-ming. Effect of wavefront aberration of grating on pulse compression[J]. High Power Laser and Particle Beams, 2005, 17(03): 0- . |
[18] | wang chao, lzhi-wei, he wei-ming. Picosecond pulse generation by stimulated Brillouin scattering compressor[J]. High Power Laser and Particle Beams, 2003, 15(12): 0- . |
[19] | ning hui, fang jin-yong, li ping, liu jing-yue, liu guo-zhi, xiao li-lin, tong de-chun, lin yu-zheng, . Experiment research on HPM pulse compression[J]. High Power Laser and Particle Beams, 2001, 13(04): 0- . |
1. | 陈俊宏,肖东华,熊玉珍,王英翘,陈小昌,宣伟民,戢洋. kA级双阶梯脉冲电源方案设计与分析. 强激光与粒子束. 2024(02): 90-96 . ![]() | |
2. | 贾伟,陈志强,吴伟,郭帆,谢霖燊,吴刚,梅锴盛,程乐,肖晶,孙楚昱,朱湘琴,陈伟. 3.8MV快前沿电磁脉冲模拟器脉冲驱动源研制. 现代应用物理. 2024(01): 112-117 . ![]() | |
3. | 吴刚,贾伟,王海洋,谢霖燊,陈志强,郭帆,吴伟,冯寒亮. 高空核电磁脉冲模拟器研制进展. 中国科学:物理学 力学 天文学. 2023(07): 97-109 . ![]() | |
4. | 赵亮,李锐,程杰,邱旭东,喻斌雄,尚蔚,高明珠. 脉冲功率装置中混合绝缘结构设计方法. 现代应用物理. 2022(04): 109-115+122 . ![]() | |
5. | 邓珀昆,林楷宣,罗秋燕,龙井华,王东,雷云飞,黄峻堃,王勇,蔡厚智,刘进元. 基于晶闸管的大电流脉冲发生器研制. 强激光与粒子束. 2021(11): 178-183 . ![]() |