Processing math: 100%
Liao Shibiao, Luo Tao, Xiao Runheng, et al. Breakthrough of 4 kW narrow linewidth linearly polarized laser based on a fiber oscillator laser and a homemade Yb-doped fiber[J]. High Power Laser and Particle Beams, 2023, 35: 091004. doi: 10.11884/HPLPB202335.230258
Citation: Zhang Jun, Zhang Wei, Ju Jinchuan, et al. Research of X-band high power triaxial klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103001. doi: 10.11884/HPLPB202032.200228

Research of X-band high power triaxial klystron amplifier

doi: 10.11884/HPLPB202032.200228
  • Received Date: 2020-09-08
  • Rev Recd Date: 2020-09-09
  • Publish Date: 2020-09-29
  • To achieve GW-level amplification output radiation at X-band, a relativistic triaxial klystron amplifier (TKA) with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW radio-frequency signal injection. Meanwhile, there is insignificant self-excitation of parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier became saturated.
  • [1]
    Varia K R. Power combining in a single multiple-diode cavity[J]. IEEE MTT-S, Int Microwave Symp Dig, 1978: 344-345.
    [2]
    Ma Y, Sun C. 1-W millimeter-wave Gunn diode combiner[J]. IEEE Trans Microwave Theory and Techniques, 1980, 28(12): 1460-1463. doi: 10.1109/TMTT.1980.1130267
    [3]
    石成才, 刘大刚, 蒙林. 互耦相对论返波管等同锁相和功率放大的粒子模拟[J]. 强激光与粒子束, 2012, 24(1):129-132. (Shi Chengcai, Liu Dagang, Meng Lin. Particle simulation of peer-to-peer locking and power amplification for mutually coupled relativistic BWOs[J]. High Power Laser and Particle Beams, 2012, 24(1): 129-132 doi: 10.3788/HPLPB20122401.0129
    [4]
    Friedman M, Krall J, Lau Y Y, et al. Externally modulated intense relativistic electron beams[J]. J Appl Phys, 1988, 64(7): 3353-3379. doi: 10.1063/1.341521
    [5]
    Friedman M, Fernsler R, Slinker S, et al. Efficient conversion of the energy of intense relativistic electron beams into RF waves[J]. Phys Rev Lett, 1995, 75(6): 1214-1217. doi: 10.1103/PhysRevLett.75.1214
    [6]
    吴涛, 黄华, 王淦平, 等. 扇形多注强流相对论电子束的产生与传输研究[J]. 物理学报, 2012, 61:184218. (Wu Tao, Huang Hua, Wang Ganping, et al. The generation and transmission research of the fan-shaped multi-beam intense relativistic electron beams[J]. Acta Physica Sinica, 2012, 61: 184218
    [7]
    刘振帮, 金晓, 黄华, 等. 强流多注相对论速调管中电子束特性的初步研究[J]. 物理学报, 2012, 61:248401. (Liu Zhenbang, Jin Xiao, Huang Hua. Preliminary study of the characteristic of multi-beam in intense multi-beam relativistic klystron[J]. Acta Physica Sinica, 2012, 61: 248401
    [8]
    刘振帮, 金晓, 黄华, 等. X波段长脉冲同轴多注相对论速调管放大器的分析与设计[J]. 物理学报, 2012, 61:128401. (Liu Zhenbang, Jin Xiao, Huang Hua. Analysis and design of X-band coaxial multi-beam relativistic klystron amplifier[J]. Acta Physica Sinica, 2012, 61: 128401
    [9]
    Qi Zumin, Zhang Jun, Zhong Huihuang, et al. A non-uniform three-gap buncher cavity with suppression of transverse-electromagnetic mode leakage in the triaxial klystron amplifier[J]. Phys Plasmas, 2014, 21: 013107. doi: 10.1063/1.4862557
    [10]
    Qi Zumin, Zhang Jun, Zhong Huihuang, et al. An improved suppression method of the transverse-electromagnetic mode leakage with two reflectors in the triaxial klystron amplifier[J]. Phys Plasmas, 2014, 21: 073103. doi: 10.1063/1.4889901
    [11]
    Ju Jinchuan, Zhang Jun, Qi Zumin, et al. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier[J]. Sci Rep, 2016, 6: 30657. doi: 10.1038/srep30657
    [12]
    Carlsten B E. A self consistent numerical analysis of klystrons using large signal beam wave interaction simulations[D]. Stanford: Stanford University, 1985.
    [13]
    Zhang Zehai, Shu Ting, Zhang Jun, et al. Matching conditions of the on the cavity absorbing property under intense beam loading[J]. IEEE Trans Plasma Science, 2012, 40(11): 3121-3126. doi: 10.1109/TPS.2012.2212285
    [14]
    Pasour J, Smithe D, Ludeking L. X-band triaxial klystron[C]//6th Workshop of High Energy Density and High Power RF. 2003: 141-150.
    [15]
    Zhu Jianhui, Xie Yongjie, Zhou Xiaofeng, et al. Analysis on the mechanism of pulse-shortening in an X-band triaxial klystron amplifier due to the asymmetric mode competition[J]. Phys Plasmas, 2016, 23: 123103. doi: 10.1063/1.4969079
    [16]
    Qi Zumin, Zhang Ju, Zhang Qiang, et al. Design and experimental demonstration of a long-pulse, X-band triaxial klystron amplifier with an asymmetric input cavity[J]. IEEE Electron Device Lett, 2016, 37(6): 782-784.
  • Relative Articles

    [1]Chen Zhiqiang, Xie Linshen, Jia Wei, He Xiaoping, Tang Junping, Chen Weiqing. Development of a 3 MV transfer capacitor used in an electromagnetic pulse simulator[J]. High Power Laser and Particle Beams, 2021, 33(9): 095001. doi: 10.11884/HPLPB202133.210195
    [2]Ma Yukuan, Chen Xiaoxu, Zhou Shouhuan, Feng Guoying, Zhou Hao, Liu Pengyu. All optical control of long period fiber grating based on graphene oxide[J]. High Power Laser and Particle Beams, 2020, 32(1): 011015. doi: 10.11884/HPLPB202032.190468
    [3]Shao Zhuqiang, Hu Zengrong, Guo Shaoxiong, Ni Yangyang, Li Yue, Zhang Yao, Chen Changjun, Wang Xiaonan. Numerical simulation of temperature field distribution for laser sintering graphene reinforced copper composites[J]. High Power Laser and Particle Beams, 2018, 30(3): 039001. doi: 10.11884/HPLPB201830.170366
    [4]Yuan Mingquan, Yang He, Zhang Zhaoyun, Xiong Zhuang. Fabrication of flexible graphene strain sensor based on PET substrate[J]. High Power Laser and Particle Beams, 2018, 30(3): 034101. doi: 10.11884/HPLPB201830.170423
    [5]Mo Jun, Feng Guoying, Liao Yu, Yang Mochou, Zhou Shouhuan. All-optical preferential absorption characteristics of graphene-coated microfiber composite waveguide[J]. High Power Laser and Particle Beams, 2018, 30(8): 081003. doi: 10.11884/HPLPB201830.180079
    [6]Li Yanglong, Wu Lingyuan, Shen Huanhuan, Liu Guodong, Wang Weiping. Patterning of graphene by light field modulated nanosecond laser[J]. High Power Laser and Particle Beams, 2018, 30(12): 129001. doi: 10.11884/HPLPB201830.180154
    [7]Hu Zengrong, Yao Bo, Tong Guoquan, Chen Changjun, Zhang Min, Zheng Zushan, Xu Jiale, Guo Huafeng, Wang Xiaonan. Tribological properties of laser cladded Gr-CBN-Ni coating[J]. High Power Laser and Particle Beams, 2017, 29(02): 029001. doi: 10.11884/HPLPB201729.160372
    [8]Wu Lingyuan, Li Yanglong, Liu Guodong, Wang Weiping. 1064 nm nanosecond laser induced damage effect on graphene[J]. High Power Laser and Particle Beams, 2015, 27(08): 081009. doi: 10.11884/HPLPB201527.081009
    [9]Hu Zengrong, Tong Guoquan, Zhang Chao, Guo Huafeng, Xu Jiale, Chen Changjun. Corrosion resistance and hardness of laser sintered graphene-copper nanocomposites[J]. High Power Laser and Particle Beams, 2015, 27(09): 099001. doi: 10.11884/HPLPB201527.099001
    [10]Li Yanna, Tang Yue, Wei Liping, Wang Yonghua, Liu Yaoying, Xue Chenyang. SOI-ring waveguide-coupled double-layer graphene modulator[J]. High Power Laser and Particle Beams, 2015, 27(02): 024109. doi: 10.11884/HPLPB201527.024109
    [11]Wang Wenjuan, Li Hua, Li Zhiwei, Tong Yong, Lin Fuchang. Lifetime improvement of metallized film capacitors by inner pressure strengthening[J]. High Power Laser and Particle Beams, 2014, 26(04): 045015. doi: 10.11884/HPLPB201426.045015
    [12]Yuan Lei, Fu Zhibing, Chang Lijuan, Yang Xi, Zhang Houqiong, Wang Chaoyang, Tang Yongjian. Preparation and performance of MnO2/graphene composite electrode materials[J]. High Power Laser and Particle Beams, 2014, 26(11): 114102. doi: 10.11884/HPLPB201426.114102
    [13]Fu Zhibing, Yuan Lei, Jiao Xingli, Yang Xi, Zhang Houqiong, Wang Chaoyang. Preparation and electrochemical performance of carbon aerogels dried at ambient pressure[J]. High Power Laser and Particle Beams, 2013, 25(12): 3235-3238. doi: 3235
    [14]Li Zhiwei, Lin Fuchang, Li Hua, Chen Yaohong, Lü Fei, Zhang Miao, Liu De. Pulsed capacitors in vacuum[J]. High Power Laser and Particle Beams, 2012, 24(05): 1229-1233. doi: 10.3788/HPLPB20122405.1229
    [15]Liu Xichuan, Yuan Lei, Feng Hao, Fu Zhibing, Wang Chaoyang, Sun Weiguo, Tang Yongjian. Preparation and performance of nitrogen-doped carbon aerogels as electrode materials[J]. High Power Laser and Particle Beams, 2012, 24(12): 2848-2852. doi: 10.3788/HPLPB20122412.2848
    [16]Zhang Hui, Chen Yu, Wang Zhiteng, Zhao Chujun, Zhang Han. Wavelength-tunable passively Q-switched erbium-doped fiber laser with graphene-based saturable absorber[J]. High Power Laser and Particle Beams, 2012, 24(12): 2807-2810. doi: 10.3788/HPLPB20122412.2807
    [17]yuan lei, yuan qiuyue, wang chaoyang, fu zhibing, zhang houqiong, tang yongjian. Preparation and performance of carbon aerogel and activated carbon aerogel as electrode materials[J]. High Power Laser and Particle Beams, 2011, 23(03): 0- .
    [18]li hua, chen yaohong, lin fuchang, peng bo. Lifetime characteristics of metallized film pulsed capacitors[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [19]zhu zhi-fang, lin fu-chang, dai ling. Performance of high energy density ceramic capacitor[J]. High Power Laser and Particle Beams, 2004, 16(10): 0- .
    [20]lin fu-chang, dai xin, xu zhi-an, li jin, yao zong-gan. High density capacitors[J]. High Power Laser and Particle Beams, 2003, 15(01): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.3 %FULLTEXT: 27.3 %META: 61.8 %META: 61.8 %PDF: 10.9 %PDF: 10.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.9 %其他: 6.9 %其他: 0.6 %其他: 0.6 %Austin: 0.1 %Austin: 0.1 %China: 0.2 %China: 0.2 %Falls Church: 0.6 %Falls Church: 0.6 %Japan: 0.6 %Japan: 0.6 %Rochester: 0.2 %Rochester: 0.2 %Seattle: 0.1 %Seattle: 0.1 %Taichung: 0.2 %Taichung: 0.2 %United States: 0.1 %United States: 0.1 %Westbury: 0.1 %Westbury: 0.1 %上海: 2.5 %上海: 2.5 %东莞: 0.2 %东莞: 0.2 %临汾: 0.2 %临汾: 0.2 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %休斯敦: 0.1 %休斯敦: 0.1 %保定: 0.5 %保定: 0.5 %信阳: 0.2 %信阳: 0.2 %兰州: 0.2 %兰州: 0.2 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 2.5 %北京: 2.5 %南京: 0.3 %南京: 0.3 %南安普敦: 0.2 %南安普敦: 0.2 %南昌: 0.2 %南昌: 0.2 %南通: 0.2 %南通: 0.2 %台州: 0.8 %台州: 0.8 %合肥: 0.4 %合肥: 0.4 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %大阪府: 0.2 %大阪府: 0.2 %天津: 1.3 %天津: 1.3 %威海: 0.1 %威海: 0.1 %宁波: 0.1 %宁波: 0.1 %宣城: 0.4 %宣城: 0.4 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.2 %常州: 0.2 %常德: 0.3 %常德: 0.3 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.0 %广州: 1.0 %廊坊: 0.1 %廊坊: 0.1 %张家口: 1.1 %张家口: 1.1 %德黑兰: 0.8 %德黑兰: 0.8 %恩施: 0.2 %恩施: 0.2 %成都: 2.3 %成都: 2.3 %扬州: 0.9 %扬州: 0.9 %新加坡: 0.2 %新加坡: 0.2 %无锡: 0.4 %无锡: 0.4 %昆明: 0.6 %昆明: 0.6 %晋城: 0.1 %晋城: 0.1 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.3 %杭州: 1.3 %棉兰: 0.2 %棉兰: 0.2 %武汉: 3.7 %武汉: 3.7 %沈阳: 0.2 %沈阳: 0.2 %波特兰: 1.0 %波特兰: 1.0 %洛阳: 0.6 %洛阳: 0.6 %济南: 0.4 %济南: 0.4 %深圳: 2.2 %深圳: 2.2 %温州: 0.6 %温州: 0.6 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.1 %湘潭: 0.1 %漯河: 2.3 %漯河: 2.3 %漳州: 0.1 %漳州: 0.1 %烟台: 0.2 %烟台: 0.2 %石家庄: 0.4 %石家庄: 0.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %索非亚: 0.1 %索非亚: 0.1 %纽约: 0.1 %纽约: 0.1 %绵阳: 1.5 %绵阳: 1.5 %芒廷维尤: 32.7 %芒廷维尤: 32.7 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.2 %苏州: 0.2 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.7 %衢州: 0.7 %西宁: 9.5 %西宁: 9.5 %西安: 0.9 %西安: 0.9 %西雅图: 0.2 %西雅图: 0.2 %诺沃克: 4.4 %诺沃克: 4.4 %贵阳: 0.4 %贵阳: 0.4 %费利蒙: 0.1 %费利蒙: 0.1 %达州: 0.2 %达州: 0.2 %运城: 1.4 %运城: 1.4 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.9 %郑州: 0.9 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.3 %重庆: 0.3 %金华: 0.1 %金华: 0.1 %釜山: 0.3 %釜山: 0.3 %长春: 0.2 %长春: 0.2 %长沙: 1.3 %长沙: 1.3 %阿坝: 0.2 %阿坝: 0.2 %青岛: 0.1 %青岛: 0.1 %黄石: 0.2 %黄石: 0.2 %其他其他AustinChinaFalls ChurchJapanRochesterSeattleTaichungUnited StatesWestbury上海东莞临汾丹东丽水乌鲁木齐休斯敦保定信阳兰州加利福尼亚州北京南京南安普敦南昌南通台州合肥呼和浩特哈尔滨哥伦布嘉兴大连大阪府天津威海宁波宣城巴音郭楞常州常德平顶山广州廊坊张家口德黑兰恩施成都扬州新加坡无锡昆明晋城普洱朝阳杭州棉兰武汉沈阳波特兰洛阳济南深圳温州湖州湘潭漯河漳州烟台石家庄秦皇岛索非亚纽约绵阳芒廷维尤芝加哥苏州衡水衡阳衢州西宁西安西雅图诺沃克贵阳费利蒙达州运城遵义邯郸郑州鄂州重庆金华釜山长春长沙阿坝青岛黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)

    Article views (1689) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return