Citation: | Ma Xiaoyu, Zhang Naling, Zhong Li, et al. Research progress of high power semiconductor laser pump source[J]. High Power Laser and Particle Beams, 2020, 32: 121010. doi: 10.11884/HPLPB202032.200236 |
[1] |
闫宏宇. 高功率半导体激光器的光束特性评价[D]. 长春: 长春理工大学, 2019: 1-5.
Yan Hongyu. Evaluation of beam characteristics of high power semiconductor laser[D]. Changchun: Changchun University of Science and Technology, 2019: 1-5
|
[2] |
王涛, 杜团结, 吴逢铁. LD泵浦的Nd:YVO4激光器被动式产生近似无衍射绿光[J]. 强激光与粒子束, 2014, 26:011007. (Wang Tao, Du Tuanjie, Wu Fengtie. Laser diode pumped Nd:YVO4laser generating quasi-non-diffracting green beam by passive axicon[J]. High Power Laser and Particle Beams, 2014, 26: 011007 doi: 10.3788/HPLPB20142601.11007
|
[3] |
乔忠良. 高亮度大功率半导体激光器研究[D]. 长春: 长春理工大学, 2011: 1-2.
Qiao Zhongliang. Research on high-power high-brightness semiconductor lasers[D]. Changchun: Changchun University of Technology, 2011: 1-2
|
[4] |
李再金, 胡黎明, 王烨, 等. 808 nm高占空比大功率半导体激光器阵列[J]. 强激光与粒子束, 2009, 21(11):1615-1618. (Li Zaijin, Hu Liming, Wang Ye, et al. High power high duty-cycle 808 nm wavelength laser diode[J]. High Power Laser and Particle Beams, 2009, 21(11): 1615-1618
|
[5] |
许阳, 房强, 谢兆鑫, 等. 基于915 nm半导体激光单端前向抽运的单纤准单模2 kW全光纤激光振荡器[J]. 中国激光, 2018, 45:0401003. (Xu Yang, Fang Qiang, Xie Zhaoxin, et al. Single fiber quasi-single mode 2 kW all-fiber laser oscillator based on single-end 915 nm semiconductor laser forward-pumping[J]. Chinese Journal of Lasers, 2018, 45: 0401003 doi: 10.3788/CJL201845.0401003
|
[6] |
刘储. 脊型波导852 nm半导体激光器模式特性研究[D]. 北京: 北京工业大学, 2017: 17-28.
Liu Chu. Fundamental lateral mode characteristics of the 852 nm ridge waveguide semiconductor laser diode[D].Beijing: Beijing University of Technology, 2017: 17-28
|
[7] |
李璟, 马骁宇, 王俊. 高功率14xx nm锥形增益区脊形波导结构量子阱激光器的研制[J]. 半导体学报, 2007, 28(1):108-112. (Li Jing, Ma Xiaoyu, Wang Jun. High-power ridge waveguide tapered diode lasers at 14xx nm[J]. Chinese Journal of Semiconductors, 2007, 28(1): 108-112 doi: 10.3969/j.issn.1674-4926.2007.01.023
|
[8] |
Winterfeldt M, Crump P, Knigge S, et al. High beam quality in broad area lasers via suppression of lateral carrier accumulation[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1809-1812. doi: 10.1109/LPT.2015.2443186
|
[9] |
Chen Z G, Bai J, Dong W, et al. High power and high efficiency kW 88x-nm multi-junction pulsed diode laser bars and arrays[C]//Proc of SPIE. 2014: 896514.
|
[10] |
Yamagata Y, Yamada Y, Kaifuchi Y, et al. Performance and reliability of high power, high brightness 8xx-9xx nm semiconductor laser diodes[C]// IEEE High Power Diode Lasers & Systems Conference. 2015: 7-8.
|
[11] |
Pietrzak A, Hülsewede R, Zorn M, et al. High-power single emitters and low fill factor bars emitting at 808 nm[C]//Proc of SPIE. 2016: 97330R.
|
[12] |
Morales J, Lehkonen S, Liu G, et al. Advances in 808 nm high power diode laser bars and single emitters[C]//Proc of SPIE. 2016: 97330T.
|
[13] |
Crump P, Frevert C, Maaβdorf A, et al. Efficient, high power pumps for mid-IR solid state lasers enabled by 200 k operation of 808 nm diode lasers[C]// IEEE Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. 2019.
|
[14] |
王岳, 王勇, 李占国, 等. 全息光刻制备808 nm腔面光栅半导体激光器[J]. 发光学报, 2019, 40(9):1130-1135. (Wang Yue, Wang Yong, Li Zhanguo, et al. 808 nm cavity surface grating semiconductor laser by holographic lithography[J]. Chinese Journal of Luminescence, 2019, 40(9): 1130-1135 doi: 10.3788/fgxb20194009.1130
|
[15] |
Pierer J, Lützelschwab M, Grossmann S, et al. Automated assembly processes of high power single emitter diode lasers for 100 W in 105 μm/NA 0.15 fiber module[C]//Proc of SPIE. 2011: 78190I.
|
[16] |
Jiang Xiaochen, Liu Rui, Gao Yanyan, et al. Packaging of wavelength stabilized 976 nm 100 W 105 m 0.15 NA fiber coupled diode lasers[C]//Proc of SPIE. 2016: 97300I.
|
[17] |
朱洪波, 郝明明, 彭航宇, 等. 基于808 nm半导体激光器单管合束技术的光纤耦合模块[J]. 中国激光, 2012, 39(5):1-5. (Zhu Hongbo, Hao Mingming, Peng Hangyu, et al. Module of fiber coupled diode laser based on 808 nm single emitters combination[J]. Chinese Journal of Lasers, 2012, 39(5): 1-5
|
[18] |
杨逸飞, 秦文斌, 刘友强, 等. 基于光束填充的多单管半导体激光器光纤耦合[J]. 强激光与粒子束, 2020, 32:071005. (Yang Yifei, Qin Wenbin, Liu Youqiang, et al. Research on fiber coupling of multi-single emitters diode laser based on beam filling[J]. High Power Laser and Particle Beams, 2020, 32: 071005
|
[19] |
Bai J G, Chen Z, Leisher P, et al. High-efficiency kW-class QCW 88x nm diode semiconductor laser bars with passive cooling[C]//Proc of SPIE. 2012, 82412.
|
[20] |
Bai J G, Bao L, Dong W, et al. Optimized performance of 808 nm diode laser bars for efficient high-power operation[C]//Proc of SPIE. 2013: 86050F7.
|
[21] |
Bagaev T A, Ladugin M A, Andreev A Y, et al. High-power 808 nm laser bars (5 mm) with wall-plug efficiency more than 67%[C]//IEEE International Conference Laser Optics. 2016: R3-31.
|
[22] |
Morales J, Lehkonen S, Liu G, et al. Advances in 808 nm high power diode laser bars and single emitters[C]//Proc of SPIE. 2016: 97330T.
|
[23] |
Ladugin M A, Marmalyuk A, Padalitsa A, et al. Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%[J]. Quantum Electronics, 2017, 47(4): 291-293. doi: 10.1070/QEL16365
|
[24] |
Kanskar M, Chen Z, Dong W, et al. High power and high efficiency 1.8-kW pulsed diode laser bar[J]. Journal of Photonics for Energy, 2017, 7: 016003. doi: 10.1117/1.JPE.7.016003
|
[25] |
王贞福, 李特, 杨国文, 等. 808 nm准连续600 W高功率半导体激光芯片研制[J]. 中国激光, 2017, 44(6):43-48. (Wang Zhenfu, Li Te, Yang Guowen, et al. Development of 808 nm quasi-continuous wave laser diode bar with 600 W output power[J]. Chinese Journal of Lasers, 2017, 44(6): 43-48
|
[26] |
Müller M, Hein S, Lauer C, et al. Advances in infrared high power lasers for long term operation[C]//Proc of SPIE. 2018: 105410I.
|
[27] |
Köhler B, Unger A, Kindervater T, et al. Wavelength stabilized multi-kW diode laser systems[C]//Proc of SPIE. 2015: 93480Q.
|
[28] |
Hou Dong, Wang Jingwei, Zhang Pu, et al. High power diode laser stack development using gold-tin bonding technology[C]//Proc of SPIE. 2015: 934604.
|
[29] |
Sipes D L. Highly efficient neodymium: yttrium aluminum garnet laser end pumped by a semiconductor laser array[J]. Applied Physics Letters, 1985, 47(2): 74-76. doi: 10.1063/1.96256
|
[30] |
Chung H S, Lee M S. Low noise, high efficiency L-band EDFA with 980 nm pumping[J]. Electronics Letters, 1999, 35(13): 1099-1100. doi: 10.1049/el:19990750
|
[31] |
Chen J, Zhu X, Sibbett W. Rate-equation studies of erbium-doped fiber lasers with common pump and laser energy bands[J]. Journal of the Optical Society of America B, 1992, 9(10): 1876-1882. doi: 10.1364/JOSAB.9.001876
|
[32] |
Crump P, Blume G, Paschke K, et al. 20 W continuous wave reliable operation of 980 nm broad-area single emitter diode lasers with an aperture of 96μm[C]// Proc of SPIE. 2009: 719814.
|
[33] |
Frevert C, Crump P, Wenzel H, et al. Efficiency optimization of high power diode lasers at low temperatures[C]//IEEE Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference. 2013.
|
[34] |
McDougall S, McKee A, Eddie I, et al. Development of high power laser technology: 915 nm mini-bars for fibre laser pumping and red laser bars for cinema/projector applications[C]//IEEE High Power Diode Lasers and Systems Conference. 2013: 22-23.
|
[35] |
Demir A, Peters M, Duesterberg R, et al. 29.5 W continuous wave output from 100 μm wide laser diode[C]//Proc of SPIE. 2015: 93480G.
|
[36] |
Bao L, Kanskar M, Devito M, et al. High reliability demonstrated on high-power and high-brightness diode lasers[C]//Proc of SPIE. 2015: 93480C.
|
[37] |
Yamagata Y, Yamada Y, Muto M, et al. 915 nm high-power broad area laser diodes with ultra-small optical confinement based on Asymmetric Decoupled Confinement Heterostructure (ADCH)[C]//Proc of SPIE. 2015: 93480F.
|
[38] |
Hu M, Wang W M, Kuang L X, et al. High-brightness 95-μm broad-area 915 nm lasers with 29.4 W COMD power[C]//IEEE Asia Communications and Photonics Conference. 2016.
|
[39] |
Zediker M S, Kaifuchi Y, Yamagata Y, et al. Ultimate high power operation of 9xx-nm single emitter broad stripe laser diodes[C]//Proc of SPIE. 2017: 100860D.
|
[40] |
Kaul T, Erbert G, Maassdorf A, et al. Suppressed power saturation due to optimized optical confinement in 9xx nm high-power diode lasers that use extreme double asymmetric vertical designs[J]. Semiconductor Science and technology, 2018, 33: 035005. doi: 10.1088/1361-6641/aaa221
|
[41] |
Kaifuchi Y, Yoshida K, Yamagata Y, et al. Enhanced power conversion efficiency in 900 nm range single emitter broad stripe laser diodes maintaining high power operability[C]// Proc of SPIE. 2019: 109000F.
|
[42] |
袁庆贺, 井红旗, 仲莉, 等. 高功率高可靠性9xx nm激光二极管[J]. 中国激光, 2020, 47(4):61-65. (Yuan Qinghe, Jing Hongqi, Zhong Li, et al. High-power and high-reliability 9xx-nm laser diode[J]. Chinese Journal of Lasers, 2020, 47(4): 61-65
|
[43] |
曼玉选, 仲莉, 马骁宇, 等. 极低内部光学损耗975 nm半导体激光器[J]. 光学学报, 2020:40:19140011. (Man Yuxuan, Zhong Li, Ma Xiaoyu, et al. 975 nm semiconductor lasers with ultra-low internal optical loss[J]. Chinese Journal of Luminescence, 2020: 40:19140011
|
[44] |
Crump P, Roder C, Staske R, et al. Limitations to peak continuous wave power in high power broad area single emitter 980 nm diode lasers[C]//IEEE European Conference on Lasers & Electro-optics & European Quantum Electronics Conference. 2009.
|
[45] |
Crump P, Frevert C, Wenzel H, et al. Cryolaser: Innovative cryogenic diode laser bars optimized for emerging ultra-high power laser applications[C]// IEEE Conference on Lasers and Electro-Optics.2013.
|
[46] |
Pietrzak A, Huelsewede R, Zorn M, et al. New highly efficient laser bars and laser arrays for 8xx-10xx nm pumping applications[C]//Proc of SPIE. 2014: 89650T.
|
[47] |
Frevert C, Crump P, Bugge F. Low-temperature optimized 940 nm diode laser bars with 1.98 kW peak power at 203 K[C]//IEEE Conference on Lasers and Electro-Optics.2015
|
[48] |
Heinemann S, An H, Barnowski T, et al. Packaging of high-power bars for optical pumping and direct applications[C]//Proc of SPIE. 2015: 934807.
|
[49] |
Frevert C, Bugge F, Knigge S, et al. 940 nm QCW diode laser bars with 70% efficiency at 1 kW output power at 203 K: analysis of remaining limits and path to higher efficiency and power at 200 K and 300 K[C]//Proc of SPIE. 2016: 97330L.
|
[50] |
Karow M M, Frevert C, Platz R, et al. Efficient 600-W-laser bars for long-pulse pump applications at 940 and 975 nm[J]. IEEE Photonics Technology Letters, 2017, 29(19): 1683-1686. doi: 10.1109/LPT.2017.2743242
|
[51] |
Heinemann S, McDougall S D, Ryu G, et al. Advanced chip designs and novel cooling techniques for brightness, scaling of industrial, high power diode laser bars[C]//Proc of SPIE. 2018: 105140Y.
|
[52] |
Jürgen Müller, Rainer Bättig, Beer V, et al. Towards 300 W high power laser bars[C]//Proc of SPIE. 2019: 109000C.
|
[53] |
Karow M M, Martin D, Della Casa P, et al. Narrower far field and higher efficiency in 1 kW diode-laser bars using improved lateral structuring[C]//IEEE Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference.2019
|
[54] |
李波, 王贞福, 仇伯仓, 等. 高功率准连续半导体激光阵列中应变对独立发光点性能的影响[J]. 光子学报, 2020, 49(9):25-32. (Li Bo, Wang Zhenfu, Qiu Bocang, et al. Influence of strain on the performance of independent emitters in high power quasi-continuous semiconductor laser array[J]. Acta Photonica Sinica, 2020, 49(9): 25-32
|
[55] |
Demidovich A A, Shkadarevich A P, Danailov M B, et al. Comparison of CW laser performance of Nd:KGW, Nd: YAG, Nd: BEL, and Nd: YVO4 under laser diode pumping[J]. Applied Physics B, 1998, 67(1): 11-15. doi: 10.1007/s003400050467
|
[56] |
Leisher P, Price K, Karlsen S, et al. High-performance wavelength-locked diode lasers[C]//Proc of SPIE. 2009: 719812.
|
[57] |
Crump P, Schultz C M, Pietrzak A, et al. 975-nm high-power broad area diode lasers optimized for narrow spectral linewidth applications[C]//Proc of SPIE. 2010: 75830N.
|
[58] |
Fricke J, Bugge F, Ginolas A, et al. High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings[J]. IEEE Photonics Technology Letters, 2010, 22(5): 284-286. doi: 10.1109/LPT.2009.2038792
|
[59] |
Fricke J, Wenzel H, Bugge F, et al. High-power distributed feedback lasers with surface gratings[J]. IEEE Photonics Technology Letters, 2012, 24(16): 1443-1445. doi: 10.1109/LPT.2012.2206378
|
[60] |
Decker J, Crump P, Fricke J, et al. Narrow stripe broad area lasers with high order distributed feedback surface gratings[J]. IEEE Photonics Technology Letters, 2014, 26(8): 829-832. doi: 10.1109/LPT.2014.2307115
|
[61] |
Mostallino R, Garcia M, Larrue A, et al. Thermal management characterization of microassemblied high power distributed-feedback broad area lasers emitting at 975 nm[C]// IEEE 67th Electronic Components and Technology Conference. 2017: 563-574.
|
[62] |
乔闯, 苏瑞巩, 李翔, 等. 980 nm高功率DBR半导体激光器的设计及工艺[J]. 中国激光, 2019, 46(7):16-20. (Qiao Chuang, Su Ruigong, Li Xiang, et al. Design and fabrication of 980 nm distributed Bragg reflection semiconductor laser with high power[J]. Chinese Journal of Lasers, 2019, 46(7): 16-20
|
[63] |
Lauer C, Bachmann A, Furitsch M, et al. Extra bright high power laser bars[C]//IEEE High Power Diode Lasers and Systems Conference. 2015: 37-38.
|
[64] |
Wang X, Wenzel H, Eppich B, et al. 56 W optical output power at 970 nm from a truncated tapered semiconductor optical amplifier[C]//IEEE Photonic Society 24th Annual Meeting. 2011: 577-578.
|
[65] |
Vu T N, Klehr A, Sumpf B, et al. Tunable 975 nm nanosecond diode-laser-based master-oscillator power-amplifier system with 16.3 W peak power and narrow spectral linewidth below 10 pm[J]. Optics Letters, 2014, 39(17): 5138-5141. doi: 10.1364/OL.39.005138
|
[66] |
Fiebig C, Blume G, Kaspari C, et al. 12 W high-brightness single-frequency DBR tapered diode laser[J]. Electronics Letters, 2008, 44(21): 1253-1255. doi: 10.1049/el:20081371
|
[67] |
Wang X Z, Erbert G, Wenzel H, et al. 17 W near-diffraction-limited 970 nm output from a tapered semiconductor optical amplifier[J]. IEEE Photonics Technology Letters, 2013, 25(2): 115-118. doi: 10.1109/LPT.2012.2228185
|
[68] |
孙胜明, 范杰, 徐莉, 等. 锥形半导体激光器研究进展[J]. 中国光学, 2019, 12(1):51-61. (Sun Shengming, Fan Jie, Xu Li, et al. Progress of tapered semiconductor diode lasers[J]. Chinese Optics, 2019, 12(1): 51-61
|