Liang Zhenhe, Zhou Changlin, Yu Daojie, et al. Analysis and measurement of temperature effect on electromagnetic susceptibility of embedded ADC[J]. High Power Laser and Particle Beams, 2017, 29: 053002. doi: 10.11884/HPLPB201729.170024
Citation: Wang Hanbin, Yang Yifeng, Yuan Zhijun, et al. Research progress on fiber laser spectral beam combining system and grating thermal analysis[J]. High Power Laser and Particle Beams, 2020, 32: 121002. doi: 10.11884/HPLPB202032.200240

Research progress on fiber laser spectral beam combining system and grating thermal analysis

doi: 10.11884/HPLPB202032.200240
  • Received Date: 2020-08-17
  • Rev Recd Date: 2020-10-22
  • Publish Date: 2020-11-19
  • The output power of single fiber is limited by the thermal effects, laser damage threshold, and nonlinear optical effects. Beam combining technology has been proposed to break through the limit of single fiber and achieve higher output power fiber laser. Spectral beam combining technology has the advantages of good beam quality and simple structure, which stands out among many beam combining technologies. We review several typical kinds of spectral beam combining technologies of fiber lasers, including their principles, current status, advantages and disadvantages. The recent progress of thermal distortion of the grating was introduced and discussed from the aspects of theoretical and experimental research, and the development trend of spectral beam combining technology are prospected.
  • [1]
    Shi Wei, Fang Qiang, Zhu Xiushan, et al. Fiber lasers and their applications[J]. Appl Opt, 2014, 53(28): 6554-6568. doi: 10.1364/AO.53.006554
    [2]
    Zhou Pu, Wang X, Xiao H, et al. Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges[J]. Laser Phys, 2012, 22(5): 823-831. doi: 10.1134/S1054660X12050404
    [3]
    Pask H M, Carman Robert J, Hanna David C, et al. Ytterbium-doped silica fiber lasers: versatile sources for the 1−1.2 μm region[J]. IEEE J Sel Top Quantum Electron, 1995, 1(1): 2-13. doi: 10.1109/2944.468377
    [4]
    Dawson Jay W, Messerly Michael J, Beach Raymond J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Opt Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [5]
    Zhu Jiajian, Zhou Pu, Ma Yanxing, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Opt Express, 2011, 19(19): 18645-18654. doi: 10.1364/OE.19.018645
    [6]
    Dajani I, Zeringue C, Lu Chunte, et al. Stimulated Brillouin scattering suppression through laser gain competition: scalability to high power[J]. Opt Lett, 2010, 35(18): 3114-3116. doi: 10.1364/OL.35.003114
    [7]
    White J O, Vasilyev A, Cahill J P, et al. Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser[J]. Opt Express, 2012, 20(12): 15872-15881.
    [8]
    Jeong Y, Sahu J K, Payne D N, et al. Ytterbium doped large-core fiber laser with 1: 36 kW continuous-wave output power[J]. Opt Express, 2004, 12(25): 6088-6092. doi: 10.1364/OPEX.12.006088
    [9]
    Fridman M, Nixon M, Ronen E, et al. Phase locking of two coupled lasers with many longitudinal modes[J]. Opt Lett, 2010, 35(4): 526-528. doi: 10.1364/OL.35.000526
    [10]
    Bourdon P, Lombard L, Durécu A, et al. Coherent combining of fiber lasers[C]//Proc of SPIE. 2017: 1025402.
    [11]
    王小林, 周朴, 粟荣涛, 等. 高功率光纤激光相干合成的现状, 趋势与挑战[J]. 中国激光, 2017, 44:0201001. (Wang Xiaolin, Zhou Pu, Su Rongtao, et al. Current situation, tendency and challenge of coherent combining of high power fiber laser[J]. Chinese Journal of Lasers, 2017, 44: 0201001
    [12]
    Wang B, Sanchez A. All-fiber passive coherent beam combining of fiber lasers and challenges[C]//Fiber Laser Applications. 2012: FTh3A. 2.
    [13]
    He Bing, Lou Qihong, Wang Wei, et al. Experimental demonstration of phase locking of a two-dimensional fiber laser array using a self-imaging resonator[J]. Applied Physics Letters, 2008, 92(25): 43-45.
    [14]
    Zhou Pu, Wang Xiaolin, Ma Yanxing, et al. Beam quality and power scalability of fiber laser array in a S-F cavity[C]//Proc of SPIE. 2009: 75090U.
    [15]
    Loftus T H, Thomas A M, Norsen M, et al. Four-channel, high power, passively phase locked fiber array[C]//Advanced Solid-state Photonics. 2008: WA4.
    [16]
    Xue Yuhao, He Bing, Zhou Jun, et al. High power passive phase locking of four Yb-doped fiber amplifiers by an all-optical feedback loop[J]. Chin Phys Lett, 2011, 28: 054212.
    [17]
    Ma Pengfei, Zhou Pu, Su R T, et al. Passive coherent polarization beam combination of a four-fiber amplifier array[J]. IEEE Photonics Journal, 2013, 5(6): 7101307.
    [18]
    Chang Weizung, Wu Tsaiwei, Winful H G, et al. Array size scalability of passively coherently phased fiber laser arrays[J]. Opt Express, 2010, 18(9): 9634-9642.
    [19]
    Daneu V, Sanchez A, Fan T Y, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity[J]. Opt Lett, 2000, 25(6): 405-407.
    [20]
    Von Rudiger E, Chantal M. Beam-combiner for fiber-delivered laser-beams of different wavelengths: U. S. 8599487[P]. 2013-12-03.
    [21]
    Ronalds G, Karen E J. Beam combining/splitter cube prism for color polarization: U. S. 5067799[P]. 1991-11-26.
    [22]
    Pickering R D. Beam combining prism: U. S. 2983183[P]. 1961-05-09.
    [23]
    Schmidt O, Wirth C, Nodop D, et al. Spectral beam combination of fiber amplified ns-pulses by means of interference filters[J]. Opt Express, 2009, 17(25): 22974-22982.
    [24]
    Ludewigt K, Liem A, Stuhr U, et al. High-power laser development for laser weapons[C]//Proc of SPIE. 2019: 1116207.
    [25]
    Chen Fan, Zhang Jianyun, Ma Jun, et al. Beam quality analysis and optimization for 10 kW-level spectral beam combination system[J]. Opt Commun, 2019, 444: 45-55.
    [26]
    Chen Fan, Ma Jun, Wei Cong, et al. 10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters[J]. Opt Express, 2017, 25(26): 32783-32791.
    [27]
    Ma Jun, Chen Fan, Wei Cong, et al. Modeling and analysis of the influence of an edge filter on the combining efficiency and beam quality of a 10-kW-class spectral beam-combining system[J]. Applied Sciences, 2019, 9(10): 2152.
    [28]
    Divliansky I. Volume Bragg gratings: Fundamentals and applications in laser beam combining and beam phase transformations[M//OL]//Holographic Materials and Optical Systems. https://www.intechopen.com/books/holographic-materials-and-optical-systems/volume-bragg-gratings-fundamentals-and-applications-in-laser-beam-combining-and-beam-phase-transform.
    [29]
    Ciapurin I V, Glebov L B, Glebova L N, et al. Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating[C]//Proc of SPIE. 2003, 4974: 209-219.
    [30]
    Sevian A, Andrusyak O, Ciapurin I, et al. Efficient power scaling of laser radiation by spectral beam combining[J]. Opt Lett, 2008, 33(4): 384-386.
    [31]
    梁小宝, 陈良明, 李超, 等. 体布拉格光栅用于高功率光谱组束的研究[J]. 强激光与粒子束, 2015, 27:071012. (Liang Xiaobao, Chen Liangming, Li Chao, et al. High average power spectral beam combining employing volume Bragg grating[J]. High Power Laser and Particle Beams, 2015, 27: 071012 doi: 10.11884/HPLPB201527.071012
    [32]
    周泰斗, 梁小宝, 李超, 等. 基于透射型体布拉格光栅的两通道 2.5 kW 光谱组束输出[J]. 物理学报, 2017, 66:084204. (Zhou Taidou, Liang Xiaobao, Li Chao, et al. Two-channel 2.5 kW spectral beam output based on transmissive volume Bragg grating[J]. Acta Physica Sinica, 2017, 66: 084204 doi: 10.7498/aps.66.084204
    [33]
    Zou Taidou, Liang Xiaobao, Li Chao, et al. Spectral beam combining of fiber lasers by using reflecting volume Bragg gratings[J]. Chin Phys Lett, 2016, 33: 124205.
    [34]
    Drachenberg D R, Andrusyak O, Venus G, et al. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers[J]. Appl Opt, 2014, 53(6): 1242-1246.
    [35]
    Ott D, Divliansky I, Anderson B, et al. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating[J]. Opt Express, 2013, 21(24): 29620.
    [36]
    Ingersoll G B, Leger J R. Channel density and efficiency optimization of spectral beam combining systems based on volume Bragg gratings in sequential and multiplexed arrangements[J]. Appl Opt, 2015, 54(20): 6244-6253.
    [37]
    Yang Yingying, Zhao Yaping, Wang Lirong, et al. Designing and optimizing highly efficient grating for high-brightness laser based on spectral beam combining[J]. Journal of Applied Physics, 2015, 117: 103108.
    [38]
    Hu Anduo, Zhou Changhe, Cao Hongchao, et al. Polarization-independent wideband mixed metal dielectric reflective gratings[J]. Appl Opt, 2012, 51(20): 4902-4906.
    [39]
    Zhang Rui, Wang Yufei, Zhang Yejin, et al. Broadband and polarization-insensitive subwavelength grating reflector for the near-infrared region[J]. Chin Opt Lett, 2014, 12: 020502.
    [40]
    Li Linxin, Jin Yunxia, Kong Fanyu, et al. Beam modulation due to thermal deformation of grating in a spectral beam combining system[J]. Appl Opt, 2017, 56(19): 5511-5519.
    [41]
    Cook C C, Fan T Y. Spectral beam combining of Yb-doped fiber lasers in an external cavity[J]. Optics & Photonics News, 1999, 10(10): 411.
    [42]
    Bochove E J. Theory of spectral beam combining of fiber lasers[J]. IEEE Journal of Quantum Electronics, 2002, 38(5): 432-445.
    [43]
    Augst S J, Goyal A K, Aggarwal R L, et al. Wavelength beam combining of ytterbium fiber lasers[J]. Opt Lett, 2003, 28(5): 331-333.
    [44]
    张璟璞, 杨依枫, 赵翔, 等. 外腔振荡式光纤激光光谱合成系统[J]. 红外与激光工程, 2018, 47:0103008. (Zhang Jingpu, Yang Yifeng, Zhao Xiang, et al. Spectral beam combining system of fiber laser by external-cavity fiber oscillator[J]. Infrared and Laser Engineering, 2018, 47: 0103008 doi: 10.3788/IRLA201847.0103008
    [45]
    Augst S J, Goyal A K, Aggarwal R L, et al. Wavelength beam combining of ytterbium fiber lasers in a MOPA configuration[C]//Conference on Lasers and Electro Optics. 2002: 594-595.
    [46]
    Loftus T H, Liu A, Hoffman P R, et al. 522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality[J]. Opt Lett, 2007, 32(4): 349-351. doi: 10.1364/OL.32.000349
    [47]
    Christian W, Oliver S, Igor T, et al. 2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers[J]. Opt Express, 2009, 17(3): 1178-1183. doi: 10.1364/OE.17.001178
    [48]
    Christian W, Oliver S, Igor T, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Opt Lett, 2011, 36(16): 3118-3120. doi: 10.1364/OL.36.003118
    [49]
    张艳, 张彬, 祝颂军. 谱合成光束特性的模拟分析[J]. 物理学报, 2007, 56(8):4590-4595. (Zhang Yan, Zhang Bin, Zhu Songjun, et al. Analysis of the property of the beam after spectral beam combining[J]. Acta Physica Sinica, 2007, 56(8): 4590-4595 doi: 10.3321/j.issn:1000-3290.2007.08.042
    [50]
    孔伟金, 云茂金, 孙欣, 等. 基于严格耦合波理论的多层介质膜光栅衍射特性分析[J]. 物理学报, 2008, 57(8):4904-4910. (Kong Weijin, Yun Maojin, Sun Xin, et al. Diffraction property of multi-layer dielectric gratings studied by rigorous coupled-wave analysis[J]. Acta Physica Sinica, 2008, 57(8): 4904-4910 doi: 10.3321/j.issn:1000-3290.2008.08.040
    [51]
    Zhang Yan, Zhang Bin. Analysis of beam quality for the laser beams after spectral beam combining[J]. International Journal for Light and Electron Optics, 2010, 121(13): 1236-1242. doi: 10.1016/j.ijleo.2009.01.002
    [52]
    Yan Hong, Ma Yi, Sun Yinhong, et al. Scalable hybrid beam combining of kilowatt fiber amplifiers into a 5-kW beam[J]. Opt Commun, 2017, 397: 95-99. doi: 10.1016/j.optcom.2017.04.007
    [53]
    马毅, 颜宏, 彭万敬, 等. 基于多路窄线宽光纤激光的9.6 kW共孔径光谱合成光源[J]. 中国激光, 2016, 43:0901009. (Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW Common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Laser, 2016, 43: 0901009 doi: 10.3788/CJL201643.0901009
    [54]
    Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Opt Express, 2016, 24(11): 12063. doi: 10.1364/OE.24.012063
    [55]
    Zheng Ye, Zhu Zhanda, Liu Xiaoxi, et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings[J]. Appl Opt, 2019, 58(30): 8339-8343. doi: 10.1364/AO.58.008339
    [56]
    Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency, and brightness[C]//Proc of SPIE. 2013: 860115.
    [57]
    Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//Proc of SPIE. 2016: 97300Y.
    [58]
    Martin L. Lockheed Martin to deliver world recordsetting 60 kW laser to U. S. Army[EB/OL]. https://phys.org/news/2017-03-lockheed-martin-world-record-setting-60kw.html.
    [59]
    Jens L, Fabian R, Sandro K, et al. The rising power of fiber lasers and amplifiers[J]. IEEE J Sel Top Quantum Electron, 2007, 13(3): 537-545. doi: 10.1109/JSTQE.2007.897182
    [60]
    Yang Lei, Wu Zhen, Zhang Bin. Influence of thermal deformation of a multilayer dielectric grating on a spectrally combined beam[J]. Appl Opt, 2016, 55(32): 9091-9100. doi: 10.1364/AO.55.009091
    [61]
    Wang Hanbin, Yuan Zhijun, Song Yinglin, et al. Thermal analysis of multilayer dielectric grating with high power laser irradiation[J]. AIP Advances, 2020, 10: 055207. doi: 10.1063/5.0006249
    [62]
    Wang J Y, Silva D E. Wave-front interpretation with Zernike polynomials[J]. Appl Opt, 1980, 19(9): 1510-1518. doi: 10.1364/AO.19.001510
    [63]
    鄢静舟, 雷凡, 周比方, 等. 用Zernike 多项式进行波面拟合的几种算法[J]. 光学 精密工程, 1999, 7(5):119-128. (Yan Jingzhou, Lei Fan, Zhou Bifang, et al. Algorithms for wavefront fitting using Zernike polynomial[J]. Optics and Precision Engineering, 1999, 7(5): 119-128 doi: 10.3321/j.issn:1004-924X.1999.05.020
    [64]
    Liu A, Mead R, Vatter T A, et al. Spectral beam combining of high-power fiber lasers[C]//Proc of SPIE. 2004, 5335: 81-88.
    [65]
    Loftus T H, Liu A, Hoffman P R, et al. 258 W of spectrally beam combined power with near-diffraction limited beam quality[C]//Proc of SPIE. 2006: 6102S.
    [66]
    Xu Jiao, Chen Junming, Chen Peng, et al. Study of the key factors affecting temperature of spectral-beam-combination grating[J]. Opt Express, 2018, 26(17): 21675-21684. doi: 10.1364/OE.26.021675
    [67]
    Xu Jiao, Chen Junming, Chen Peng, et al. Dependence of temperature and far-field beam quality on substrate thickness of a spectral beam combining grating with 13.4 kW/cm2 laser irradiation[J]. Appl Opt, 2018, 57(18): D165. doi: 10.1364/AO.57.00D165
    [68]
    公维超, 郑也, 杨依枫, 等. 多层电介质衍射光栅高功率激光辐照特性研究[J]. 中国激光, 2017, 44:0504003. (Gong Weichao, Zheng Ye, Yang Yifeng, et al. Research on characteristic of multilayer dielectric diffraction grating under high power laser irradiation[J]. Chinese Journal of Lasers, 2017, 44: 0504003 doi: 10.3788/CJL201744.0504003
  • Relative Articles

    [1]Gao Mingxuan, Zhang Yang, Zhang Jun. Influence of high-power microwave signal on temperature distribution of PIN limiter[J]. High Power Laser and Particle Beams, 2024, 36(4): 043022. doi: 10.11884/HPLPB202436.230236
    [2]Chen Zidong, Qin Feng, Zhao Jingtao, Zhao Gang, Liu Zhong. Spike leakage characteristic of limiter irradiated by high power microwave[J]. High Power Laser and Particle Beams, 2020, 32(10): 103014. doi: 10.11884/HPLPB202032.200097
    [3]Yuan Yueqian, Chen Zidong, Ma Hongge, Qin Feng. High power microwave effect of PIN limiter induced by single pulse[J]. High Power Laser and Particle Beams, 2020, 32(6): 063003. doi: 10.11884/HPLPB202032.190174
    [4]Chen Kaibai, Gao Min, Zhou Xiaodong, Dao Xinyu. Analysis of coupling effect of high-power microwave on millimeter wave fuze[J]. High Power Laser and Particle Beams, 2019, 31(11): 113003. doi: 10.11884/HPLPB201931.190180
    [5]Wang Ming, Ma Hongge. Influence of pulse interval on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2018, 30(6): 063002. doi: 10.11884/HPLPB201830.170426
    [6]Zhang Yongzhan, Meng Fanbao, Zhao Gang. Influence of Ⅰ layer thickness on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2017, 29(09): 093002. doi: 10.11884/HPLPB201729.170087
    [7]Peng Shengren, Yuan Chengwei, Shu Ting, Wu Dapeng, Zhang Qiang. Design of Ka-band high power TM0n-TEM hybrid modes convertor[J]. High Power Laser and Particle Beams, 2016, 28(03): 033014. doi: 10.11884/HPLPB201628.033014
    [8]Zhao Zhenguo, Zhou Haijing, Ma Hongge, Wang Yan. Influence of frequency and microwave repetition rate on thermal damage process of PIN limiter[J]. High Power Laser and Particle Beams, 2015, 27(10): 103239. doi: 10.11884/HPLPB201527.103239
    [9]Zhao Zhenguo, Zhou Haijing, Ma Hongge, Zhao Qiang, Zhong Longquan. Numerical simulation and verification of electromagnetic pulse effect of PIN diode limiter[J]. High Power Laser and Particle Beams, 2014, 26(06): 063018. doi: 10.11884/HPLPB201426.063018
    [10]Hu Kai, Li Tianming, Wang Haiyang, Zhou Yihong. High power microwave effect of multi-stage PIN[J]. High Power Laser and Particle Beams, 2014, 26(06): 063015. doi: 10.11884/HPLPB201426.063015
    [11]Wang Shuai, Xu Xiang, Wang Younian. Two-dimensional hybrid simulation of dual-frequency capacitively coupled CF4 plasma[J]. High Power Laser and Particle Beams, 2013, 25(09): 2297-2302. doi: 10.3788/HPLPB20132509.2297
    [12]Zhao Zhenguo, Ma Hongge, Zhao Gang, Wang Yan, Zhong Longquan. Characteristics of temperature during PIN limiter thermal damage caused by microwaves[J]. High Power Laser and Particle Beams, 2013, 25(07): 1741-1746. doi: 10.3788/HPLPB20132507.1741
    [13]zhang zhiqiang, fang jinyong, li jiawei, huang huijun, wang kangyi, song zhimin, huang wenhua, jiao yongchang. X-band high power microwave TE11 mode circular polarizer[J]. High Power Laser and Particle Beams, 2011, 23(07): 0- .
    [14]zhang haiwei, shi xiaowei, xu le, wei feng. Design and test scheme of high power PIN limiters[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [15]zhang wei, du zhengwei. Simulation of irradiation effects of high power microwave on PCB circuits[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [16]chen xi, du zhengwei, gong ke. Effect of pulse width on thermal effect of microwave pulse on PIN limiter[J]. High Power Laser and Particle Beams, 2010, 22(07): 0- .
    [17]zhou min, guo qing-gong, huang ka-ma. Effect on peak leakage caused by junction temperature rise in PIN diode limiter[J]. High Power Laser and Particle Beams, 2008, 20(02): 0- .
    [18]wang hai-yang, li jia-yin, zhou yi-hong, li hao, yu xiu-yun. Experimental study and PSpice simulation of PIN diode limiter[J]. High Power Laser and Particle Beams, 2006, 18(01): 0- .
    [19]liu qing-xiang, ge ming-li, yuan cheng-wei, zang jie-feng. A new kind of high power microwave phase shifter[J]. High Power Laser and Particle Beams, 2005, 17(04): 0- .
    [20]huang wen-hua, liu jing-yue, fan ju-ping, chen chang-hua, hu yong-mei, song zhi-min, ning hui. New type of high power microwave detector[J]. High Power Laser and Particle Beams, 2002, 14(03): 0- .
  • Cited by

    Periodical cited type(2)

    1. 吴旭景,王蒙军,吴建飞,李彬鸿,郝宁,高见头,李宏,张红丽. 体Si和SOI工艺SRAM芯片电磁敏感度的温度效应. 电波科学学报. 2021(01): 101-108 .
    2. 程俊平,徐志坚,周长林,张栋耀. 数字逻辑电路GPIO电磁抗扰度的热应力效应分析. 电波科学学报. 2019(04): 447-454 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.4 %FULLTEXT: 24.4 %META: 70.1 %META: 70.1 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %其他: 0.7 %其他: 0.7 %China: 0.5 %China: 0.5 %India: 0.0 %India: 0.0 %Japan: 0.0 %Japan: 0.0 %Koesan: 0.0 %Koesan: 0.0 %Korea Republic of: 0.4 %Korea Republic of: 0.4 %Romania: 0.0 %Romania: 0.0 %Singapore: 0.2 %Singapore: 0.2 %Ukraine: 0.1 %Ukraine: 0.1 %United Kingdom: 0.2 %United Kingdom: 0.2 %United States: 0.0 %United States: 0.0 %[]: 1.0 %[]: 1.0 %上海: 0.5 %上海: 0.5 %东莞: 0.1 %东莞: 0.1 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %伊斯坦布尔: 0.1 %伊斯坦布尔: 0.1 %伊朗: 0.0 %伊朗: 0.0 %兰州: 0.0 %兰州: 0.0 %北京: 22.2 %北京: 22.2 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 0.1 %南京: 0.1 %印多尔: 0.1 %印多尔: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.2 %合肥: 0.2 %咸阳: 0.1 %咸阳: 0.1 %哈尔科夫: 0.1 %哈尔科夫: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 0.0 %天津: 0.0 %太原: 0.1 %太原: 0.1 %宜昌: 0.0 %宜昌: 0.0 %宝鸡: 0.1 %宝鸡: 0.1 %巴中: 0.0 %巴中: 0.0 %广州: 0.1 %广州: 0.1 %张家口: 0.2 %张家口: 0.2 %德黑兰: 0.2 %德黑兰: 0.2 %成都: 0.1 %成都: 0.1 %扬州: 0.2 %扬州: 0.2 %无锡: 0.2 %无锡: 0.2 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 0.2 %杭州: 0.2 %桃园: 0.0 %桃园: 0.0 %武汉: 0.4 %武汉: 0.4 %泰安: 0.0 %泰安: 0.0 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %海得拉巴: 0.0 %海得拉巴: 0.0 %淄博: 0.0 %淄博: 0.0 %深圳: 0.0 %深圳: 0.0 %温州: 0.1 %温州: 0.1 %渭南: 0.0 %渭南: 0.0 %湖州: 0.1 %湖州: 0.1 %漯河: 0.4 %漯河: 0.4 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.0 %秦皇岛: 0.0 %纳什维尔: 0.2 %纳什维尔: 0.2 %绵阳: 0.5 %绵阳: 0.5 %罗利: 0.2 %罗利: 0.2 %艾因: 0.3 %艾因: 0.3 %芒廷维尤: 11.2 %芒廷维尤: 11.2 %芝加哥: 0.0 %芝加哥: 0.0 %西宁: 48.4 %西宁: 48.4 %西安: 1.5 %西安: 1.5 %西安市长安区: 0.0 %西安市长安区: 0.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.0 %贵阳: 0.0 %运城: 0.2 %运城: 0.2 %郑州: 0.3 %郑州: 0.3 %重庆: 0.4 %重庆: 0.4 %金奈: 0.0 %金奈: 0.0 %长沙: 0.2 %长沙: 0.2 %长治: 0.0 %长治: 0.0 %阳泉: 0.0 %阳泉: 0.0 %雷德蒙德: 0.0 %雷德蒙德: 0.0 %首尔特别: 0.0 %首尔特别: 0.0 %其他其他ChinaIndiaJapanKoesanKorea Republic ofRomaniaSingaporeUkraineUnited KingdomUnited States[]上海东莞中山临汾丹东伊斯坦布尔伊朗兰州北京华盛顿州南京印多尔台州合肥咸阳哈尔科夫嘉兴天津太原宜昌宝鸡巴中广州张家口德黑兰成都扬州无锡昆明晋城普洱杭州桃园武汉泰安洛阳济南海得拉巴淄博深圳温州渭南湖州漯河福州秦皇岛纳什维尔绵阳罗利艾因芒廷维尤芝加哥西宁西安西安市长安区诺沃克贵阳运城郑州重庆金奈长沙长治阳泉雷德蒙德首尔特别

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(46)  / Tables(1)

    Article views (4154) PDF downloads(457) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return