Citation: | Wang Hanbin, Yang Yifeng, Yuan Zhijun, et al. Research progress on fiber laser spectral beam combining system and grating thermal analysis[J]. High Power Laser and Particle Beams, 2020, 32: 121002. doi: 10.11884/HPLPB202032.200240 |
[1] |
Shi Wei, Fang Qiang, Zhu Xiushan, et al. Fiber lasers and their applications[J]. Appl Opt, 2014, 53(28): 6554-6568. doi: 10.1364/AO.53.006554
|
[2] |
Zhou Pu, Wang X, Xiao H, et al. Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges[J]. Laser Phys, 2012, 22(5): 823-831. doi: 10.1134/S1054660X12050404
|
[3] |
Pask H M, Carman Robert J, Hanna David C, et al. Ytterbium-doped silica fiber lasers: versatile sources for the 1−1.2 μm region[J]. IEEE J Sel Top Quantum Electron, 1995, 1(1): 2-13. doi: 10.1109/2944.468377
|
[4] |
Dawson Jay W, Messerly Michael J, Beach Raymond J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Opt Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
|
[5] |
Zhu Jiajian, Zhou Pu, Ma Yanxing, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Opt Express, 2011, 19(19): 18645-18654. doi: 10.1364/OE.19.018645
|
[6] |
Dajani I, Zeringue C, Lu Chunte, et al. Stimulated Brillouin scattering suppression through laser gain competition: scalability to high power[J]. Opt Lett, 2010, 35(18): 3114-3116. doi: 10.1364/OL.35.003114
|
[7] |
White J O, Vasilyev A, Cahill J P, et al. Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser[J]. Opt Express, 2012, 20(12): 15872-15881.
|
[8] |
Jeong Y, Sahu J K, Payne D N, et al. Ytterbium doped large-core fiber laser with 1: 36 kW continuous-wave output power[J]. Opt Express, 2004, 12(25): 6088-6092. doi: 10.1364/OPEX.12.006088
|
[9] |
Fridman M, Nixon M, Ronen E, et al. Phase locking of two coupled lasers with many longitudinal modes[J]. Opt Lett, 2010, 35(4): 526-528. doi: 10.1364/OL.35.000526
|
[10] |
Bourdon P, Lombard L, Durécu A, et al. Coherent combining of fiber lasers[C]//Proc of SPIE. 2017: 1025402.
|
[11] |
王小林, 周朴, 粟荣涛, 等. 高功率光纤激光相干合成的现状, 趋势与挑战[J]. 中国激光, 2017, 44:0201001. (Wang Xiaolin, Zhou Pu, Su Rongtao, et al. Current situation, tendency and challenge of coherent combining of high power fiber laser[J]. Chinese Journal of Lasers, 2017, 44: 0201001
|
[12] |
Wang B, Sanchez A. All-fiber passive coherent beam combining of fiber lasers and challenges[C]//Fiber Laser Applications. 2012: FTh3A. 2.
|
[13] |
He Bing, Lou Qihong, Wang Wei, et al. Experimental demonstration of phase locking of a two-dimensional fiber laser array using a self-imaging resonator[J]. Applied Physics Letters, 2008, 92(25): 43-45.
|
[14] |
Zhou Pu, Wang Xiaolin, Ma Yanxing, et al. Beam quality and power scalability of fiber laser array in a S-F cavity[C]//Proc of SPIE. 2009: 75090U.
|
[15] |
Loftus T H, Thomas A M, Norsen M, et al. Four-channel, high power, passively phase locked fiber array[C]//Advanced Solid-state Photonics. 2008: WA4.
|
[16] |
Xue Yuhao, He Bing, Zhou Jun, et al. High power passive phase locking of four Yb-doped fiber amplifiers by an all-optical feedback loop[J]. Chin Phys Lett, 2011, 28: 054212.
|
[17] |
Ma Pengfei, Zhou Pu, Su R T, et al. Passive coherent polarization beam combination of a four-fiber amplifier array[J]. IEEE Photonics Journal, 2013, 5(6): 7101307.
|
[18] |
Chang Weizung, Wu Tsaiwei, Winful H G, et al. Array size scalability of passively coherently phased fiber laser arrays[J]. Opt Express, 2010, 18(9): 9634-9642.
|
[19] |
Daneu V, Sanchez A, Fan T Y, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity[J]. Opt Lett, 2000, 25(6): 405-407.
|
[20] |
Von Rudiger E, Chantal M. Beam-combiner for fiber-delivered laser-beams of different wavelengths: U. S. 8599487[P]. 2013-12-03.
|
[21] |
Ronalds G, Karen E J. Beam combining/splitter cube prism for color polarization: U. S. 5067799[P]. 1991-11-26.
|
[22] |
Pickering R D. Beam combining prism: U. S. 2983183[P]. 1961-05-09.
|
[23] |
Schmidt O, Wirth C, Nodop D, et al. Spectral beam combination of fiber amplified ns-pulses by means of interference filters[J]. Opt Express, 2009, 17(25): 22974-22982.
|
[24] |
Ludewigt K, Liem A, Stuhr U, et al. High-power laser development for laser weapons[C]//Proc of SPIE. 2019: 1116207.
|
[25] |
Chen Fan, Zhang Jianyun, Ma Jun, et al. Beam quality analysis and optimization for 10 kW-level spectral beam combination system[J]. Opt Commun, 2019, 444: 45-55.
|
[26] |
Chen Fan, Ma Jun, Wei Cong, et al. 10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters[J]. Opt Express, 2017, 25(26): 32783-32791.
|
[27] |
Ma Jun, Chen Fan, Wei Cong, et al. Modeling and analysis of the influence of an edge filter on the combining efficiency and beam quality of a 10-kW-class spectral beam-combining system[J]. Applied Sciences, 2019, 9(10): 2152.
|
[28] |
Divliansky I. Volume Bragg gratings: Fundamentals and applications in laser beam combining and beam phase transformations[M//OL]//Holographic Materials and Optical Systems. https://www.intechopen.com/books/holographic-materials-and-optical-systems/volume-bragg-gratings-fundamentals-and-applications-in-laser-beam-combining-and-beam-phase-transform.
|
[29] |
Ciapurin I V, Glebov L B, Glebova L N, et al. Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating[C]//Proc of SPIE. 2003, 4974: 209-219.
|
[30] |
Sevian A, Andrusyak O, Ciapurin I, et al. Efficient power scaling of laser radiation by spectral beam combining[J]. Opt Lett, 2008, 33(4): 384-386.
|
[31] |
梁小宝, 陈良明, 李超, 等. 体布拉格光栅用于高功率光谱组束的研究[J]. 强激光与粒子束, 2015, 27:071012. (Liang Xiaobao, Chen Liangming, Li Chao, et al. High average power spectral beam combining employing volume Bragg grating[J]. High Power Laser and Particle Beams, 2015, 27: 071012 doi: 10.11884/HPLPB201527.071012
|
[32] |
周泰斗, 梁小宝, 李超, 等. 基于透射型体布拉格光栅的两通道 2.5 kW 光谱组束输出[J]. 物理学报, 2017, 66:084204. (Zhou Taidou, Liang Xiaobao, Li Chao, et al. Two-channel 2.5 kW spectral beam output based on transmissive volume Bragg grating[J]. Acta Physica Sinica, 2017, 66: 084204 doi: 10.7498/aps.66.084204
|
[33] |
Zou Taidou, Liang Xiaobao, Li Chao, et al. Spectral beam combining of fiber lasers by using reflecting volume Bragg gratings[J]. Chin Phys Lett, 2016, 33: 124205.
|
[34] |
Drachenberg D R, Andrusyak O, Venus G, et al. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers[J]. Appl Opt, 2014, 53(6): 1242-1246.
|
[35] |
Ott D, Divliansky I, Anderson B, et al. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating[J]. Opt Express, 2013, 21(24): 29620.
|
[36] |
Ingersoll G B, Leger J R. Channel density and efficiency optimization of spectral beam combining systems based on volume Bragg gratings in sequential and multiplexed arrangements[J]. Appl Opt, 2015, 54(20): 6244-6253.
|
[37] |
Yang Yingying, Zhao Yaping, Wang Lirong, et al. Designing and optimizing highly efficient grating for high-brightness laser based on spectral beam combining[J]. Journal of Applied Physics, 2015, 117: 103108.
|
[38] |
Hu Anduo, Zhou Changhe, Cao Hongchao, et al. Polarization-independent wideband mixed metal dielectric reflective gratings[J]. Appl Opt, 2012, 51(20): 4902-4906.
|
[39] |
Zhang Rui, Wang Yufei, Zhang Yejin, et al. Broadband and polarization-insensitive subwavelength grating reflector for the near-infrared region[J]. Chin Opt Lett, 2014, 12: 020502.
|
[40] |
Li Linxin, Jin Yunxia, Kong Fanyu, et al. Beam modulation due to thermal deformation of grating in a spectral beam combining system[J]. Appl Opt, 2017, 56(19): 5511-5519.
|
[41] |
Cook C C, Fan T Y. Spectral beam combining of Yb-doped fiber lasers in an external cavity[J]. Optics & Photonics News, 1999, 10(10): 411.
|
[42] |
Bochove E J. Theory of spectral beam combining of fiber lasers[J]. IEEE Journal of Quantum Electronics, 2002, 38(5): 432-445.
|
[43] |
Augst S J, Goyal A K, Aggarwal R L, et al. Wavelength beam combining of ytterbium fiber lasers[J]. Opt Lett, 2003, 28(5): 331-333.
|
[44] |
张璟璞, 杨依枫, 赵翔, 等. 外腔振荡式光纤激光光谱合成系统[J]. 红外与激光工程, 2018, 47:0103008. (Zhang Jingpu, Yang Yifeng, Zhao Xiang, et al. Spectral beam combining system of fiber laser by external-cavity fiber oscillator[J]. Infrared and Laser Engineering, 2018, 47: 0103008 doi: 10.3788/IRLA201847.0103008
|
[45] |
Augst S J, Goyal A K, Aggarwal R L, et al. Wavelength beam combining of ytterbium fiber lasers in a MOPA configuration[C]//Conference on Lasers and Electro Optics. 2002: 594-595.
|
[46] |
Loftus T H, Liu A, Hoffman P R, et al. 522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality[J]. Opt Lett, 2007, 32(4): 349-351. doi: 10.1364/OL.32.000349
|
[47] |
Christian W, Oliver S, Igor T, et al. 2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers[J]. Opt Express, 2009, 17(3): 1178-1183. doi: 10.1364/OE.17.001178
|
[48] |
Christian W, Oliver S, Igor T, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Opt Lett, 2011, 36(16): 3118-3120. doi: 10.1364/OL.36.003118
|
[49] |
张艳, 张彬, 祝颂军. 谱合成光束特性的模拟分析[J]. 物理学报, 2007, 56(8):4590-4595. (Zhang Yan, Zhang Bin, Zhu Songjun, et al. Analysis of the property of the beam after spectral beam combining[J]. Acta Physica Sinica, 2007, 56(8): 4590-4595 doi: 10.3321/j.issn:1000-3290.2007.08.042
|
[50] |
孔伟金, 云茂金, 孙欣, 等. 基于严格耦合波理论的多层介质膜光栅衍射特性分析[J]. 物理学报, 2008, 57(8):4904-4910. (Kong Weijin, Yun Maojin, Sun Xin, et al. Diffraction property of multi-layer dielectric gratings studied by rigorous coupled-wave analysis[J]. Acta Physica Sinica, 2008, 57(8): 4904-4910 doi: 10.3321/j.issn:1000-3290.2008.08.040
|
[51] |
Zhang Yan, Zhang Bin. Analysis of beam quality for the laser beams after spectral beam combining[J]. International Journal for Light and Electron Optics, 2010, 121(13): 1236-1242. doi: 10.1016/j.ijleo.2009.01.002
|
[52] |
Yan Hong, Ma Yi, Sun Yinhong, et al. Scalable hybrid beam combining of kilowatt fiber amplifiers into a 5-kW beam[J]. Opt Commun, 2017, 397: 95-99. doi: 10.1016/j.optcom.2017.04.007
|
[53] |
马毅, 颜宏, 彭万敬, 等. 基于多路窄线宽光纤激光的9.6 kW共孔径光谱合成光源[J]. 中国激光, 2016, 43:0901009. (Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW Common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Laser, 2016, 43: 0901009 doi: 10.3788/CJL201643.0901009
|
[54] |
Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Opt Express, 2016, 24(11): 12063. doi: 10.1364/OE.24.012063
|
[55] |
Zheng Ye, Zhu Zhanda, Liu Xiaoxi, et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings[J]. Appl Opt, 2019, 58(30): 8339-8343. doi: 10.1364/AO.58.008339
|
[56] |
Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency, and brightness[C]//Proc of SPIE. 2013: 860115.
|
[57] |
Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//Proc of SPIE. 2016: 97300Y.
|
[58] |
Martin L. Lockheed Martin to deliver world recordsetting 60 kW laser to U. S. Army[EB/OL]. https://phys.org/news/2017-03-lockheed-martin-world-record-setting-60kw.html.
|
[59] |
Jens L, Fabian R, Sandro K, et al. The rising power of fiber lasers and amplifiers[J]. IEEE J Sel Top Quantum Electron, 2007, 13(3): 537-545. doi: 10.1109/JSTQE.2007.897182
|
[60] |
Yang Lei, Wu Zhen, Zhang Bin. Influence of thermal deformation of a multilayer dielectric grating on a spectrally combined beam[J]. Appl Opt, 2016, 55(32): 9091-9100. doi: 10.1364/AO.55.009091
|
[61] |
Wang Hanbin, Yuan Zhijun, Song Yinglin, et al. Thermal analysis of multilayer dielectric grating with high power laser irradiation[J]. AIP Advances, 2020, 10: 055207. doi: 10.1063/5.0006249
|
[62] |
Wang J Y, Silva D E. Wave-front interpretation with Zernike polynomials[J]. Appl Opt, 1980, 19(9): 1510-1518. doi: 10.1364/AO.19.001510
|
[63] |
鄢静舟, 雷凡, 周比方, 等. 用Zernike 多项式进行波面拟合的几种算法[J]. 光学 精密工程, 1999, 7(5):119-128. (Yan Jingzhou, Lei Fan, Zhou Bifang, et al. Algorithms for wavefront fitting using Zernike polynomial[J]. Optics and Precision Engineering, 1999, 7(5): 119-128 doi: 10.3321/j.issn:1004-924X.1999.05.020
|
[64] |
Liu A, Mead R, Vatter T A, et al. Spectral beam combining of high-power fiber lasers[C]//Proc of SPIE. 2004, 5335: 81-88.
|
[65] |
Loftus T H, Liu A, Hoffman P R, et al. 258 W of spectrally beam combined power with near-diffraction limited beam quality[C]//Proc of SPIE. 2006: 6102S.
|
[66] |
Xu Jiao, Chen Junming, Chen Peng, et al. Study of the key factors affecting temperature of spectral-beam-combination grating[J]. Opt Express, 2018, 26(17): 21675-21684. doi: 10.1364/OE.26.021675
|
[67] |
Xu Jiao, Chen Junming, Chen Peng, et al. Dependence of temperature and far-field beam quality on substrate thickness of a spectral beam combining grating with 13.4 kW/cm2 laser irradiation[J]. Appl Opt, 2018, 57(18): D165. doi: 10.1364/AO.57.00D165
|
[68] |
公维超, 郑也, 杨依枫, 等. 多层电介质衍射光栅高功率激光辐照特性研究[J]. 中国激光, 2017, 44:0504003. (Gong Weichao, Zheng Ye, Yang Yifeng, et al. Research on characteristic of multilayer dielectric diffraction grating under high power laser irradiation[J]. Chinese Journal of Lasers, 2017, 44: 0504003 doi: 10.3788/CJL201744.0504003
|