Citation: | Yü Shihan, Li Xiaofeng, Weng Suming, et al. Laser plasma instabilities and their suppression strategies[J]. High Power Laser and Particle Beams, 2021, 33: 012006. doi: 10.11884/HPLPB202133.200125 |
[1] |
Atzeni S, Meyerter-Vehn J. The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter[M]. London: Oxford Press, 2004:317-388.
|
[2] |
Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339. doi: 10.1063/1.1578638
|
[3] |
Froula D H, Divol L, London R A, et al. Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility[J]. Physics of Plasmas, 2010, 17: 056302. doi: 10.1063/1.3304474
|
[4] |
Hinkel D E, Rosen M D, Williams E A, et al. Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility[J]. Physics of Plasmas, 2011, 18: 056312. doi: 10.1063/1.3577836
|
[5] |
Drake J F, Kaw P K, Lee Yichang, et al. Parametric instabilities of electromagnetic waves in plasmas[J]. The Physics of Fluids, 1974, 17(4): 778-785. doi: 10.1063/1.1694789
|
[6] |
Forslund D W, Kindel J M, Lindman E L. Theory of stimulated scattering processes in laser-irradiated plasmas[J]. The Physics of Fluids, 1975, 18(8): 1002-1016. doi: 10.1063/1.861248
|
[7] |
Kruer W L. The physics of laser plasma interactions[M]. Carlifornia: Addison-Wesley Publishing, 1988: 73-94.
|
[8] |
Liu Chuansheng, Tripathi V K, Eliasson B. High-power laser-plasma interaction[M]. London: Cambridge University Press, 2019: 180-227.
|
[9] |
Montgomery D S. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion[J]. Physics of Plasmas, 2016, 23: 055601. doi: 10.1063/1.4946016
|
[10] |
Umstadter D, Williams R, Clayton C, et al. Observation of steepening in electron plasma waves driven by stimulated Raman backscattering[J]. Physical Review Letters, 1987, 59(3): 292-295. doi: 10.1103/PhysRevLett.59.292
|
[11] |
Umstadter D, Mori W B, Joshi C. The coupling of stimulated Raman and Brillouin scattering in a plasma[J]. Physics of Fluids B: Plasma Physics, 1989, 1(1): 183-187. doi: 10.1063/1.859085
|
[12] |
Zhao Yao, Sheng Zhengming, Weng Suming, et al. Absolute instability modes due to rescattering of stimulated Raman scattering in a large nonuniform plasma[J]. High Power Laser Science and Engineering, 2019, 7: e20. doi: 10.1017/hpl.2019.5
|
[13] |
Kruer W L, Estabrook K, Lasinski B F, et al. Raman backscatter in high temperature, inhomogeneous plasmas[J]. Physics of Fluids, 1980, 23(7): 1326-1329. doi: 10.1063/1.863145
|
[14] |
Mima K, M. S. Jovanović, Sentoku Y, et al. Stimulated photon cascade and condensate in a relativistic laser-plasma interaction[J]. Physics of Plasmas, 2001, 8(5): 2349-2356. doi: 10.1063/1.1356741
|
[15] |
Winjum B J, Fahlen J E, Tsung F S, et al. Anomalously hot electrons due to re scatter of stimulated Raman scattering in the kinetic regime[J]. Physical Review Letters, 2013, 110: 165001. doi: 10.1103/PhysRevLett.110.165001
|
[16] |
Liu Chuansheng, Rosenbluth M N, White R B. Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasmas[J]. The Physics of Fluids, 1974, 17(6): 1211-1219. doi: 10.1063/1.1694867
|
[17] |
Feng Qingsong, Liu Zhanjun, Zheng Chunyang, et al. Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser–plasma interaction[J]. Plasma Physics and Controlled Fusion, 2017, 59: 075007. doi: 10.1088/1361-6587/aa710a
|
[18] |
Xiao Chengzhuo, Zhuo Hongbin, Yin Yan, et al. Linear theory of multibeam parametric instabilities in homogeneous plasmas[J]. Physics of Plasmas, 2019, 26: 062109. doi: 10.1063/1.5096850
|
[19] |
Baldis H A, Villeneuve D M, Labaune C, et al. Coexistence of stimulated Raman and Brillouin scattering in laser-produced plasmas[J]. Physics of Fluids B: Plasma Physics, 1991, 3(8): 2341-2348. doi: 10.1063/1.859602
|
[20] |
Zhao Yao, Yu Lule, Weng Suming, et al. Inhibition of stimulated Raman scattering due to the excitation of stimulated Brillouin scattering[J]. Physics of Plasmas, 2017, 24: 092116. doi: 10.1063/1.5004689
|
[21] |
杨冬, 李志超, 李三伟, 等. 间接驱动惯性约束聚变中的激光等离子体不稳定性[J]. 中国科学: 物理学 力学 天文学, 2018, 48(6):21-36. (Yang Dong, Li Zhichao, Li Sanwei, et al. Laser plasma instability in indirect-drive inertial confinement fusion[J]. Science Sinica Physical, Mechanical & Astronomica, 2018, 48(6): 21-36
|
[22] |
Lindl J D. Inertial confinement fusion[M]. New York: Springer-Verlag, 1998.
|
[23] |
Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. Journal of Applied Physics, 1989, 66(8): 3456-3462. doi: 10.1063/1.344101
|
[24] |
Dixit S N, Feit M D, Perry M D, et al. Designing fully continuous phase screens for tailoring focal-plane irradiance profiles[J]. Optics Letters, 1996, 21(21): 1715-1717. doi: 10.1364/OL.21.001715
|
[25] |
Lefebvre E, Berger R L, Langdon A B, et al. Reduction of laser self-focusing in plasma by polarization smoothing[J]. Physics of Plasmas, 1998, 5(7): 2701-2705. doi: 10.1063/1.872957
|
[26] |
Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5): 243-255. doi: 10.1016/j.mre.2017.07.004
|
[27] |
Afeyan B, Hüller S. Optimal control of laser plasma instabilities using Spike Trains of Uneven Duration and Delay (STUD pulses) for ICF and IFE[C]//EPJ Web of Conferences. EDP Sciences, 2013, 59: 05009.
|
[28] |
Albright B J, Yin Lilan, Afeyan B. Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay[J]. Physical Review Letters, 2014, 113: 045002. doi: 10.1103/PhysRevLett.113.045002
|
[29] |
Thomson J J, Karush J I. Effects of finite-bandwidth driver on the parametric instability[J]. The Physics of Fluids, 1974, 17(8): 1608-1613. doi: 10.1063/1.1694940
|
[30] |
Obenschain S P, Luhmann Jr N C, Greiling P T. Effects of finite-bandwidth driver pumps on the parametric-decay instability[J]. Physical Review Letters, 1976, 36(22): 1309-1312. doi: 10.1103/PhysRevLett.36.1309
|
[31] |
Guzdar P N, Liu Chuansheng, Lehmberg R H. The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas[J]. Physics of Fluids B: Plasma Physics, 1991, 3(10): 2882-2888. doi: 10.1063/1.859921
|
[32] |
Dodd E S, Umstadter D. Coherent control of stimulated Raman scattering using chirped laser pulses[J]. Physics of Plasmas, 2001, 8(8): 3531-3534. doi: 10.1063/1.1382820
|
[33] |
Zhao Yao, Weng Suming, Chen Min, et al. Effective suppression of parametric instabilities with decoupled broadband lasers in plasma[J]. Physics of Plasmas, 2017, 24: 112102. doi: 10.1063/1.5003420
|
[34] |
Zhao Yao, Weng Suming, Sheng Zhengming, et al. Suppression of parametric instabilities in inhomogeneous plasma with multi-frequency light[J]. Plasma Physics and Controlled Fusion, 2019, 61: 115008. doi: 10.1088/1361-6587/ab4691
|
[35] |
Zhou H Y, Xiao Chengzhuo, Zou Debin, et al. Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime[J]. Physics of Plasmas, 2018, 25: 062703. doi: 10.1063/1.5030153
|
[36] |
Follett R K, Shaw J G, Myatt J F, et al. Thresholds of absolute instabilities driven by a broadband laser[J]. Physics of Plasmas, 2019, 26: 062111. doi: 10.1063/1.5098479
|
[37] |
Follett R K, Shaw J G, Myatt J F, et al. Suppressing two-plasmon decay with laser frequency detuning[J]. Physical Review Letters, 2018, 120: 135005. doi: 10.1103/PhysRevLett.120.135005
|
[38] |
Barth I, Fisch N J. Reducing parametric backscattering by polarization rotation[J]. Physics of Plasmas, 2016, 23: 102106. doi: 10.1063/1.4964291
|
[39] |
Zhou Hongyu, Xiao Chengzhuo, Jiao Jinlong, et al. Kinetic simulation of nonlinear stimulated Raman scattering excited by a rotated polarized pump[J]. Plasma Physics and Controlled Fusion, 2019, 61: 105004. doi: 10.1088/1361-6587/ab34ba
|
[40] |
Liu Zhanjun, Zheng Chunyang, Cao Lihua, et al. Decreasing Brillouin and Raman scattering by alternating-polarization light[J]. Physics of Plasmas, 2017, 24: 032701. doi: 10.1063/1.4977910
|
[41] |
Ban Shuaishuai, Wang Qing, Liu Zhanjun, et al. Suppression of stimulated Brillouin scattering by two perpendicular linear polarization lasers[J]. AIP Advances, 2020, 10: 025123. doi: 10.1063/1.5141009
|
[42] |
Hinkel D E, Edwards M J, Amendt P A, et al. Progress toward ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2013, 55: 124015. doi: 10.1088/0741-3335/55/12/124015
|
[43] |
Feng Qingsong, Zheng Chunyang, Liu Zhanjun, et al. Stimulated Brillouin scattering behaviors in multi-ion species plasmas in high-temperature and high-density region[J]. Physics of Plasmas, 2019, 26: 052101. doi: 10.1063/1.5088372
|
[44] |
Paknezhad A, Dorranian D. Nonlinear backward Raman scattering in the short laser pulse interaction with a cold underdense transversely magnetized plasma[J]. Laser and Particle Beams, 2011, 29(3): 373-380. doi: 10.1017/S0263034611000474
|
[45] |
Liu Zhanjun, Li Bin, Xiang Jiang, et al. Faraday effect on stimulated Raman scattering in the linear region[J]. Plasma Physics and Controlled Fusion, 2018, 60: 045008. doi: 10.1088/1361-6587/aaae32
|
[46] |
Edwards M R, Shi Yuan, Mikhailova J M, et al. Laser amplification in strongly magnetized plasma[J]. Physical Review Letters, 2019, 123: 025001. doi: 10.1103/PhysRevLett.123.025001
|
[47] |
Cui Yong, Gao Yanqi, Rao Daxing, et al. High-energy low-temporal-coherence instantaneous broadband pulse system[J]. Optics Letters, 2019, 44(11): 2859-2862. doi: 10.1364/OL.44.002859
|
[48] |
Regan S P. Laser direct-drive inertial confinement fusion research on OMEGA[R]. Rochester: Laboratory for Laser Energetics(LLE), University of Rochester, 2018.
|