Citation: | Yü Shihan, Li Xiaofeng, Weng Suming, et al. Laser plasma instabilities and their suppression strategies[J]. High Power Laser and Particle Beams, 2021, 33: 012006. doi: 10.11884/HPLPB202133.200125 |
[1] |
Atzeni S, Meyerter-Vehn J. The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter[M]. London: Oxford Press, 2004:317-388.
|
[2] |
Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339. doi: 10.1063/1.1578638
|
[3] |
Froula D H, Divol L, London R A, et al. Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility[J]. Physics of Plasmas, 2010, 17: 056302. doi: 10.1063/1.3304474
|
[4] |
Hinkel D E, Rosen M D, Williams E A, et al. Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility[J]. Physics of Plasmas, 2011, 18: 056312. doi: 10.1063/1.3577836
|
[5] |
Drake J F, Kaw P K, Lee Yichang, et al. Parametric instabilities of electromagnetic waves in plasmas[J]. The Physics of Fluids, 1974, 17(4): 778-785. doi: 10.1063/1.1694789
|
[6] |
Forslund D W, Kindel J M, Lindman E L. Theory of stimulated scattering processes in laser-irradiated plasmas[J]. The Physics of Fluids, 1975, 18(8): 1002-1016. doi: 10.1063/1.861248
|
[7] |
Kruer W L. The physics of laser plasma interactions[M]. Carlifornia: Addison-Wesley Publishing, 1988: 73-94.
|
[8] |
Liu Chuansheng, Tripathi V K, Eliasson B. High-power laser-plasma interaction[M]. London: Cambridge University Press, 2019: 180-227.
|
[9] |
Montgomery D S. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion[J]. Physics of Plasmas, 2016, 23: 055601. doi: 10.1063/1.4946016
|
[10] |
Umstadter D, Williams R, Clayton C, et al. Observation of steepening in electron plasma waves driven by stimulated Raman backscattering[J]. Physical Review Letters, 1987, 59(3): 292-295. doi: 10.1103/PhysRevLett.59.292
|
[11] |
Umstadter D, Mori W B, Joshi C. The coupling of stimulated Raman and Brillouin scattering in a plasma[J]. Physics of Fluids B: Plasma Physics, 1989, 1(1): 183-187. doi: 10.1063/1.859085
|
[12] |
Zhao Yao, Sheng Zhengming, Weng Suming, et al. Absolute instability modes due to rescattering of stimulated Raman scattering in a large nonuniform plasma[J]. High Power Laser Science and Engineering, 2019, 7: e20. doi: 10.1017/hpl.2019.5
|
[13] |
Kruer W L, Estabrook K, Lasinski B F, et al. Raman backscatter in high temperature, inhomogeneous plasmas[J]. Physics of Fluids, 1980, 23(7): 1326-1329. doi: 10.1063/1.863145
|
[14] |
Mima K, M. S. Jovanović, Sentoku Y, et al. Stimulated photon cascade and condensate in a relativistic laser-plasma interaction[J]. Physics of Plasmas, 2001, 8(5): 2349-2356. doi: 10.1063/1.1356741
|
[15] |
Winjum B J, Fahlen J E, Tsung F S, et al. Anomalously hot electrons due to re scatter of stimulated Raman scattering in the kinetic regime[J]. Physical Review Letters, 2013, 110: 165001. doi: 10.1103/PhysRevLett.110.165001
|
[16] |
Liu Chuansheng, Rosenbluth M N, White R B. Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasmas[J]. The Physics of Fluids, 1974, 17(6): 1211-1219. doi: 10.1063/1.1694867
|
[17] |
Feng Qingsong, Liu Zhanjun, Zheng Chunyang, et al. Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser–plasma interaction[J]. Plasma Physics and Controlled Fusion, 2017, 59: 075007. doi: 10.1088/1361-6587/aa710a
|
[18] |
Xiao Chengzhuo, Zhuo Hongbin, Yin Yan, et al. Linear theory of multibeam parametric instabilities in homogeneous plasmas[J]. Physics of Plasmas, 2019, 26: 062109. doi: 10.1063/1.5096850
|
[19] |
Baldis H A, Villeneuve D M, Labaune C, et al. Coexistence of stimulated Raman and Brillouin scattering in laser-produced plasmas[J]. Physics of Fluids B: Plasma Physics, 1991, 3(8): 2341-2348. doi: 10.1063/1.859602
|
[20] |
Zhao Yao, Yu Lule, Weng Suming, et al. Inhibition of stimulated Raman scattering due to the excitation of stimulated Brillouin scattering[J]. Physics of Plasmas, 2017, 24: 092116. doi: 10.1063/1.5004689
|
[21] |
杨冬, 李志超, 李三伟, 等. 间接驱动惯性约束聚变中的激光等离子体不稳定性[J]. 中国科学: 物理学 力学 天文学, 2018, 48(6):21-36. (Yang Dong, Li Zhichao, Li Sanwei, et al. Laser plasma instability in indirect-drive inertial confinement fusion[J]. Science Sinica Physical, Mechanical & Astronomica, 2018, 48(6): 21-36
|
[22] |
Lindl J D. Inertial confinement fusion[M]. New York: Springer-Verlag, 1998.
|
[23] |
Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. Journal of Applied Physics, 1989, 66(8): 3456-3462. doi: 10.1063/1.344101
|
[24] |
Dixit S N, Feit M D, Perry M D, et al. Designing fully continuous phase screens for tailoring focal-plane irradiance profiles[J]. Optics Letters, 1996, 21(21): 1715-1717. doi: 10.1364/OL.21.001715
|
[25] |
Lefebvre E, Berger R L, Langdon A B, et al. Reduction of laser self-focusing in plasma by polarization smoothing[J]. Physics of Plasmas, 1998, 5(7): 2701-2705. doi: 10.1063/1.872957
|
[26] |
Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5): 243-255. doi: 10.1016/j.mre.2017.07.004
|
[27] |
Afeyan B, Hüller S. Optimal control of laser plasma instabilities using Spike Trains of Uneven Duration and Delay (STUD pulses) for ICF and IFE[C]//EPJ Web of Conferences. EDP Sciences, 2013, 59: 05009.
|
[28] |
Albright B J, Yin Lilan, Afeyan B. Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay[J]. Physical Review Letters, 2014, 113: 045002. doi: 10.1103/PhysRevLett.113.045002
|
[29] |
Thomson J J, Karush J I. Effects of finite-bandwidth driver on the parametric instability[J]. The Physics of Fluids, 1974, 17(8): 1608-1613. doi: 10.1063/1.1694940
|
[30] |
Obenschain S P, Luhmann Jr N C, Greiling P T. Effects of finite-bandwidth driver pumps on the parametric-decay instability[J]. Physical Review Letters, 1976, 36(22): 1309-1312. doi: 10.1103/PhysRevLett.36.1309
|
[31] |
Guzdar P N, Liu Chuansheng, Lehmberg R H. The effect of bandwidth on the convective Raman instability in inhomogeneous plasmas[J]. Physics of Fluids B: Plasma Physics, 1991, 3(10): 2882-2888. doi: 10.1063/1.859921
|
[32] |
Dodd E S, Umstadter D. Coherent control of stimulated Raman scattering using chirped laser pulses[J]. Physics of Plasmas, 2001, 8(8): 3531-3534. doi: 10.1063/1.1382820
|
[33] |
Zhao Yao, Weng Suming, Chen Min, et al. Effective suppression of parametric instabilities with decoupled broadband lasers in plasma[J]. Physics of Plasmas, 2017, 24: 112102. doi: 10.1063/1.5003420
|
[34] |
Zhao Yao, Weng Suming, Sheng Zhengming, et al. Suppression of parametric instabilities in inhomogeneous plasma with multi-frequency light[J]. Plasma Physics and Controlled Fusion, 2019, 61: 115008. doi: 10.1088/1361-6587/ab4691
|
[35] |
Zhou H Y, Xiao Chengzhuo, Zou Debin, et al. Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime[J]. Physics of Plasmas, 2018, 25: 062703. doi: 10.1063/1.5030153
|
[36] |
Follett R K, Shaw J G, Myatt J F, et al. Thresholds of absolute instabilities driven by a broadband laser[J]. Physics of Plasmas, 2019, 26: 062111. doi: 10.1063/1.5098479
|
[37] |
Follett R K, Shaw J G, Myatt J F, et al. Suppressing two-plasmon decay with laser frequency detuning[J]. Physical Review Letters, 2018, 120: 135005. doi: 10.1103/PhysRevLett.120.135005
|
[38] |
Barth I, Fisch N J. Reducing parametric backscattering by polarization rotation[J]. Physics of Plasmas, 2016, 23: 102106. doi: 10.1063/1.4964291
|
[39] |
Zhou Hongyu, Xiao Chengzhuo, Jiao Jinlong, et al. Kinetic simulation of nonlinear stimulated Raman scattering excited by a rotated polarized pump[J]. Plasma Physics and Controlled Fusion, 2019, 61: 105004. doi: 10.1088/1361-6587/ab34ba
|
[40] |
Liu Zhanjun, Zheng Chunyang, Cao Lihua, et al. Decreasing Brillouin and Raman scattering by alternating-polarization light[J]. Physics of Plasmas, 2017, 24: 032701. doi: 10.1063/1.4977910
|
[41] |
Ban Shuaishuai, Wang Qing, Liu Zhanjun, et al. Suppression of stimulated Brillouin scattering by two perpendicular linear polarization lasers[J]. AIP Advances, 2020, 10: 025123. doi: 10.1063/1.5141009
|
[42] |
Hinkel D E, Edwards M J, Amendt P A, et al. Progress toward ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2013, 55: 124015. doi: 10.1088/0741-3335/55/12/124015
|
[43] |
Feng Qingsong, Zheng Chunyang, Liu Zhanjun, et al. Stimulated Brillouin scattering behaviors in multi-ion species plasmas in high-temperature and high-density region[J]. Physics of Plasmas, 2019, 26: 052101. doi: 10.1063/1.5088372
|
[44] |
Paknezhad A, Dorranian D. Nonlinear backward Raman scattering in the short laser pulse interaction with a cold underdense transversely magnetized plasma[J]. Laser and Particle Beams, 2011, 29(3): 373-380. doi: 10.1017/S0263034611000474
|
[45] |
Liu Zhanjun, Li Bin, Xiang Jiang, et al. Faraday effect on stimulated Raman scattering in the linear region[J]. Plasma Physics and Controlled Fusion, 2018, 60: 045008. doi: 10.1088/1361-6587/aaae32
|
[46] |
Edwards M R, Shi Yuan, Mikhailova J M, et al. Laser amplification in strongly magnetized plasma[J]. Physical Review Letters, 2019, 123: 025001. doi: 10.1103/PhysRevLett.123.025001
|
[47] |
Cui Yong, Gao Yanqi, Rao Daxing, et al. High-energy low-temporal-coherence instantaneous broadband pulse system[J]. Optics Letters, 2019, 44(11): 2859-2862. doi: 10.1364/OL.44.002859
|
[48] |
Regan S P. Laser direct-drive inertial confinement fusion research on OMEGA[R]. Rochester: Laboratory for Laser Energetics(LLE), University of Rochester, 2018.
|
[1] | Jiang Jinbo, Cheng Tingqiang, Huang Guoliang, Wang Jiadong, Cai Wanchen, Yao Yandong. Pulse magnetic properties measurement of Fe-based nanocrystalline cores and its application in magnetic switches[J]. High Power Laser and Particle Beams, 2023, 35(5): 055004. doi: 10.11884/HPLPB202335.220304 |
[2] | Dong Yayun, Cui Zhitong, Cheng Yinhui, Qin Feng, Nie Xin. Circuit modeling and analysis of kA level pulse current injection probe[J]. High Power Laser and Particle Beams, 2022, 34(9): 095013. doi: 10.11884/HPLPB202234.210565 |
[3] | Wu Youcheng, Liu Gaomin, He Hongliang, Deng Jianjun, Dai Wenfeng, Feng Chuanjun. Fast pulse generation technology based on explosive driven ferroelectric generators[J]. High Power Laser and Particle Beams, 2022, 34(7): 075017. doi: 10.11884/HPLPB202234.210471 |
[4] | Sun Chuyu, Wang Haiyang, Xie Linshen, Chi Xiaohong. Flashover characteristics of epoxy/Al2O3 composite under nanosecond rising pulses in SF6 gas[J]. High Power Laser and Particle Beams, 2021, 33(5): 055002. doi: 10.11884/HPLPB202133.200289 |
[5] | Rao Junfeng, Zhang Wei, Li Zi, Jiang Song, Pi Teer. Reverse avalanche breakdown characteristics of collector junctions in bipolar junction transistors[J]. High Power Laser and Particle Beams, 2016, 28(12): 125002. doi: 10.11884/HPLPB201628.160158 |
[6] | Huang Ziping, Chen Sifu, Ye Yi. Circuit simulation of the Dragon-Ⅱ’s induction cavity[J]. High Power Laser and Particle Beams, 2016, 28(10): 105101. doi: 10.11884/HPLPB201628.151251 |
[7] | Cong Peitian, Qiu AiCi. 快脉冲直线变压器气体开关技术[J]. High Power Laser and Particle Beams, 2012, 24(06): 1263-1268. doi: 10.3788/HPLPB20122406.1263 |
[8] | Yin Jiahui, Wei Hao, Sun Fengju, Liu Peng, Liu Zhigang, Qiu Aici. Synchronized trigger system for fast linear transformer driver[J]. High Power Laser and Particle Beams, 2012, 24(04): 871-875. doi: 10.3788/HPLPB20122404.0871 |
[9] | Chen Lin, Xie Weiping, Zou Wenkang, Zhou Liangji, Wang Meng, Dai Yingmin, Ren Jing, Li Ye. 100 GW fast linear transformer driver generator[J]. High Power Laser and Particle Beams, 2012, 24(03): 651-654. doi: 10.3788/HPLPB20122403.0651 |
[10] | Zhang Guowei, Cong Peitian, Qiao Kailai, Huang Tao, Sun Tieping. Loss characteristics of glassy alloy magnetic core under pulsed magnetization[J]. High Power Laser and Particle Beams, 2012, 24(05): 1247-1250. doi: 10.3788/HPLPB20122405.1247 |
[11] | Rao Junfeng, Qiu Jian, Liu Kefu. Dynamic characteristics of magnetic switch with pulse compression circuit[J]. High Power Laser and Particle Beams, 2012, 24(04): 859-862. doi: 10.3788/HPLPB20122404.0859 |
[12] | Wang Zhiguo, Sun Fengju, Qiu Aici, Jiang Xiaofeng, Liang Tianxue, Yin Jiahui, Liu Peng, Wei Hao, Zhang Pengfei, Zhang Zhong. Loss characteristics of FLTD magnetic cores under fast pulsed voltage[J]. High Power Laser and Particle Beams, 2012, 24(03): 524-527. |
[13] | wang qingfeng, liu qingxiang, gao guoqiang, zhang zhengquan, hu kesong. Relation between voltage-second character and interlayer insulation of magnetic core for linear transformer driver[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- . |
[14] | sun tieping, qiao kailai, cong peitian, zhang guowei, huang tao, luo weixi, wang liangping, zeng zhengzhong. Self-breakdown charicteristic of multigap switch for fast linear transformer driver[J]. High Power Laser and Particle Beams, 2011, 23(01): 0- . |
[15] | sun tieping, qiao kailai, guo ning, zhang guowei, han juanjuan, huang tao, wang liangping, cong peitian, zeng zhengzhong. Influence of discharge synchronization on output current in fast linear transformer driver stage[J]. High Power Laser and Particle Beams, 2010, 22(08): 0- . |
[16] | liu xuandong, sun fengju, jiang xiaofeng, liang tianxue, sun fu, qiu aici. Influence of gas switch jitter on output characteristics of single modular fast linear transformer driver[J]. High Power Laser and Particle Beams, 2010, 22(05): 0- . |
[17] | wang fahou, shi jinshui, chen sifu, xia liansheng, lin xi. Advances in big-size fast-pulsed amorphous cores research[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- . |
[18] | meng zhipeng, qian baoliang, yang hanwu, yang shi, yu xiaohui. Response characteristics of linear transformer driver module[J]. High Power Laser and Particle Beams, 2009, 21(10): 0- . |
[19] | liang tian-xue, sun feng-ju, zeng jiang-tao, yin jia-hui, cong pei-tian, sun jian-feng, chen yu-lan, zhang zhong, yang hai-liang. Experimental study on magnetizing property of magnetic core for LTD[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- . |
[20] | zhang jin-qi, jiang xing-liang, chen zhi-gang. Characteristics study of short-pulsed dielectric breakdown in liquids[J]. High Power Laser and Particle Beams, 2006, 18(06): 0- . |
1. | 万臻博,丁卫东,孙凤举. 直线变压器驱动源磁芯磁化过程的仿真研究. 高电压技术. 2024(04): 1792-1800 . ![]() |