Volume 33 Issue 1
Nov.  2020
Turn off MathJax
Article Contents
Huang Xianbin, Xu Qiang, Wang Kunlun, et al. Progress on high energy density physics experiments with pinch devices[J]. High Power Laser and Particle Beams, 2021, 33: 012002. doi: 10.11884/HPLPB202133.200128
Citation: Huang Xianbin, Xu Qiang, Wang Kunlun, et al. Progress on high energy density physics experiments with pinch devices[J]. High Power Laser and Particle Beams, 2021, 33: 012002. doi: 10.11884/HPLPB202133.200128

Progress on high energy density physics experiments with pinch devices

doi: 10.11884/HPLPB202133.200128
  • Received Date: 2020-06-19
  • Rev Recd Date: 2020-07-07
  • Publish Date: 2020-11-19
  • The pinch devices based on pulsed power technique can produce extreme conditions of temperature, pressure, density and strong radiation in spatial scale of cm and time scale of 100 ns. Numerous high energy density physics experiments are carried out on the 10 MA level pulsed power facility constructed at Institute of Fluid Physics, CAEP, which utilize a wide range of load configurations. Z-pinch driven dynamic hohlraums produce high temperature radiation field required for conducting inertial confinement fusion (ICF) experiments. Characteristics of implosion dynamics of metallic foils and solid liners are investigated and presented. Implosions using medium and low Z materials produce considerable K-shell line emissions, which are used to perform X-ray thermo-mechanical effect experiments. Magnetically driven isentropic compression and shock loading provide new experimental capabilities for research on dynamic materials properties. Ring diodes and reflex triodes are adopted to produce large X-ray or gamma-ray dose (rate) from bremsstrahlung. Magnetically driven radial metallic foils are used to simulate the formation of stellar jets and its radiation relevant to astrophysics. Additionally, experimental results of formation of preheated magnetized plasma target on a field reverse configuration (FRC) magnetized target fusion device are presented.
  • loading
  • [1]
    Drake R P. High-energy-density physics[M]. New York: Springer-Verlag, 2006.
    [2]
    Matzen M K, Sweeney M A, Adams R G, et al. Pulsed-power-driven high energy density physics and inertial confinement fusion research[J]. Physics of Plasmas, 2005, 12: 055503. doi: 10.1063/1.1891746
    [3]
    Cuneo M E, Herrmann M C, Sinars D B, et al. Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories[J]. IEEE Trans Plasma Science, 2012, 40(12): 3222-3245. doi: 10.1109/TPS.2012.2223488
    [4]
    Deng J J, Xie W P, Feng S F, et al. Initial performance of the primary test stand[J]. IEEE Trans Plasma Science, 2013, 41(10): 2580-2583. doi: 10.1109/TPS.2013.2274154
    [5]
    Huang Xianbin, Zhou Shaotong, Dan Jiakun, et al. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand[J]. Physics of Plasmas, 2015, 22(7): 072707. doi: 10.1063/1.4926532
    [6]
    孙奇志, 方东凡, 刘伟, 等. “荧光-1”实验装置物理设计[J]. 物理学报, 2013, 62:078407. (Sun Qizhi, Fang Dongfan, Liu Wei, et al. Phsical design of the "Ying-Guang 1" device[J]. Acta Physica Sinica, 2013, 62: 078407 doi: 10.7498/aps.62.078407
    [7]
    方东凡, 孙奇志, 贾月松, 等. “荧光-1”实验装置研制与调试[J]. 强激光与粒子束, 2017, 29:095001. (Fang Dongfan, Sun Qizhi, Jia Yuesong, et al. Development and test of the "Yingguang-l" program-discharged pulsed power device[J]. High Power Laser and Particle Beams, 2017, 29: 095001 doi: 10.11884/HPLPB201729.170077
    [8]
    Hammer J H, Tabak M, Wilks S C, et al. High yield inertial confinement fusion target design for a Z-pinch-driven hohlraum[J]. Physics of Plasmas, 1999, 6(5): 2129-2136. doi: 10.1063/1.873464
    [9]
    Smirnov V P. Fast liners for inertial fusion[J]. Plasma Physics and Controlled Fusion, 1991, 33(13): 1697-1714. doi: 10.1088/0741-3335/33/13/014
    [10]
    Brownell J H, Bowers R L, McLenithan K D, et al. Radiation environments produced by plasma Z-pinch stagnation on central targets[J]. Physics of Plasmas, 1998, 5(5): 2071-2080. doi: 10.1063/1.872879
    [11]
    Ruiz C L, Cooper G W, Slutz S A, et al. Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums[J]. Physical Review Letters, 2004, 93: 015001. doi: 10.1103/PhysRevLett.93.015001
    [12]
    Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 2007, 49(12B): 591-600. doi: 10.1088/0741-3335/49/12B/S55
    [13]
    Slutz S A, Herrmann M C, Vesey S A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
    [14]
    彭先觉, 王真. Z箍缩驱动聚变-裂变混合能源堆总体概念研究[J]. 强激光与粒子束, 2014, 26:090201. (Peng Xianjue, Wang Zhen. Nuclear energy and fusion-fission hybrid reactor for pure energy production[J]. High Power Laser and Particle Beams, 2014, 26: 090201 doi: 10.11884/HPLPB201426.090201
    [15]
    彭先觉, 师学明. 核能与聚变裂变混合能源堆[J]. 物理, 2010, 39(6):385-389. (Peng Xianjue, Shi Xueming. Nuclear energy and fusion-fission hybrid reactor for pure energy production[J]. Physics, 2010, 39(6): 385-389
    [16]
    黄显宾, 邓建军, 杨礼兵, 等. “阳”加速器上的Z箍缩诊断技术[J]. 强激光与粒子束, 2010, 22(4):870-874. (Huang Xianbin, Deng Jianjun, Yang Libing, et al. Diagnostics on Yang accelerator for Z-pinch experiment[J]. High Power Laser and Particle Beams, 2010, 22(4): 870-874 doi: 10.3788/HPLPB20102204.0870
    [17]
    肖德龙, 孙顺凯, 薛创, 等. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究[J]. 物理学报, 2015, 64:235203. (Xiao Delong, Sun Shunkai, Xue Chuang, et al. Numerical studies on the formation process of Z-pinch dynamic hohlraums and key issues of optimizing dynamic hohlraum radiation[J]. Acta Physica Sinica, 2015, 64: 235203 doi: 10.7498/aps.64.235203
    [18]
    Huang Xianbin, Ren Xiaodong, Dan Jiakun, et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Physics of Plasmas, 2017, 24: 092704. doi: 10.1063/1.4998619
    [19]
    肖德龙, 戴自换, 孙顺凯, 等. Z箍缩动态黑腔驱动靶丸内爆动力学[J]. 物理学报, 2018, 67:025203. (Xiao Delong, Dai Zihuan, Sun Shunkai, et al. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion[J]. Acta Physica Sinica, 2018, 67: 025203 doi: 10.7498/aps.67.20171640
    [20]
    Lebedev S V, Beg F N, Bland S N, et al. Effect of discrete wires on the implosion dynamics of wire array Z pinches[J]. Physics of Plasmas, 2001, 8(8): 3734-3746. doi: 10.1063/1.1385373
    [21]
    Cuneo M E, Waisman E M, Lebedev S V, et al. Characteristics and scaling of tungsten-wire-array z-pinch implosion dynamics at 20 MA[J]. Physical Review E, 2005, 71: 046406. doi: 10.1103/PhysRevE.71.046406
    [22]
    Wang Guanqiong, Xiao Delong, Dan Jiakun, et al. Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility[J]. Chinese Physics B, 2019, 28: 025203. doi: 10.1088/1674-1056/28/2/025203
    [23]
    Wang Xiaoguang, Sun Shunkai, Xiao Delong, et al. Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility[J]. Chinese Physics B, 2019, 28: 035201. doi: 10.1088/1674-1056/28/3/035201
    [24]
    Oreshkin V I. Thermal instability during an electrical wire explosion[J]. Physics of Plasmas, 2008, 15: 092103. doi: 10.1063/1.2966121
    [25]
    Peterson K, Sinars D B, Yu E P, et al. Electrothermal instability growth in magnetically driven pulsed power liners[J]. Physics of Plasmas, 2012, 19: 092701. doi: 10.1063/1.4751868
    [26]
    Gof’berg S M, Velikovich A L. Suppression of Rayleigh-Taylor instability by the snowplow mechanism[J]. Physics of Fluids B, 1993, 5(4): 1164-1172. doi: 10.1063/1.860974
    [27]
    Reinovsky R E. Pulsed power experiments in hydrodynamics and material properties[J]. IEEE Trans Plasma Science, 2000, 28(5): 1563-1570. doi: 10.1109/27.901234
    [28]
    Sinars D B, Slutz A, Herrmann M C, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z Facility[J]. Physical Review Letters, 2010, 105: 185001. doi: 10.1103/PhysRevLett.105.185001
    [29]
    Sinars D B, Campbell E M, Cuneo M E, et al. The role of magnetized liner inertial fusion as a pathway to fusion energy[J]. Journal of Fusion Energy, 2016, 35(1): 78-84. doi: 10.1007/s10894-015-0023-4
    [30]
    阳庆国, 黄显宾, 刘冬兵, 等. 聚龙一号装置上首次铝套筒Z箍缩X射线背照相实验[J]. 强激光与粒子束, 2016, 28:040101. (Yang Qingguo, Huang Xianbin, Liu Dongbing, et al. Diagnostics on Yang accelerator for Z-pinch experiment[J]. High Power Laser and Particle Beams, 2016, 28: 040101 doi: 10.11884/HPLPB201628.120101
    [31]
    Strand O T, Berzins L V, Goosman D R, et al. Velocimetry using heterodyne techniques[R]. UCRL-CONF-206034, 2004.
    [32]
    Dolan D H. Accuracy and precision in photonic Doppler velocimetry[J]. Review of Scientific Instruments, 2010, 81: 053905. doi: 10.1063/1.3429257
    [33]
    汤文辉, 张若棋, 赵国民. 脉冲X射线诱导的热击波[J]. 高压物理学报, 1995, 9(2):107-111. (Tang Wenhui, Zhang Ruoqi, Zhao Guomin. Thermal shock wave induced by impulsive X-ray[J]. Chinese Journal of High Pressure Physics, 1995, 9(2): 107-111 doi: 10.11858/gywlxb.1995.02.004
    [34]
    彭常贤, 谭红梅, 林鹏, 等. 脉冲软X光辐射三种材料的喷射冲量实验研究[J]. 强激光与粒子束, 2003, 15(1):89-93. (Peng Changxian, Tan Hongmei, Lin Peng, et al. Experimental studies of blowoff impulse in materials irradiated by pulsed soft X-ray[J]. High Power Laser and Particle Beams, 2003, 15(1): 89-93
    [35]
    Remo J L, Furnish M D, Lawrence R J. Plasma-driven Z-pinch X-ray loading and momentum coupling in meteorite and planetary materials[J]. Journal of Plasma Physics, 2013, 79: 121-141.
    [36]
    Spielman R.B, Deeney C, Chandler G A, et al. Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ[J]. Physics of Plasmas, 1998, 5(5): 2105-2111. doi: 10.1063/1.872881
    [37]
    Coverdale C A, Jones B, Ampleford D J, et al. K-shell X-ray sources at the Z accelerator[J]. High Energy Density Physics, 2010, 6(2): 143-152. doi: 10.1016/j.hedp.2010.01.006
    [38]
    Bailey J E, Rochau G A, Mancini R C, et al. Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas[J]. Physics of Plasmas, 2009, 16: 058101. doi: 10.1063/1.3089604
    [39]
    Nagayama T, Bailey J E, Loisel G, et al. Control and diagnosis of temperature, density, and uniformity in X-ray heated iron/magnesium samples for opacity measurements[J]. Physics of Plasmas, 2014, 21: 056502. doi: 10.1063/1.4872324
    [40]
    Bailey J E, Nagayama T, Loisel G P, et al. A higher-than-predicted measurement of iron opacity at solar interior temperatures[J]. Nature, 2015, 517(7532): 56-59. doi: 10.1038/nature14048
    [41]
    Swanekamp. B, Weber B V, Stephanakis S J, et al. Bremsstrahlung target optimization for reflex triodes[J]. Physics of Plasmas, 2008, 15: 083105. doi: 10.1063/1.2963090
    [42]
    Iwan D C. Computer simulations of the ring diode for Saturn[R]. SAND-85-2585, 1986.
    [43]
    Struve K W, Joseph N R, Thomas R D, et al. Refurbishment and enhancement of the Saturn accelerator[C]//IEEE International Conference on Plasma Sciences. 2015.
    [44]
    Murphy D P, Weber B V, Swanekamp S B, et al. High-current reflex triode research[C]//The 18th IEEE International Pulsed Power Conference. 2011.
    [45]
    Lai Dingguo, Qiu Mengtong, Xu Qifu, et al. A two-stage series diode for intense large-area moderate pulsed X rays production[J]. Review of Scientific Instruments, 2017, 88: 013506. doi: 10.1063/1.4974102
    [46]
    孙承纬, 赵剑衡, 王桂吉, 等. 磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用[J]. 力学进展, 2012, 42(4):206-219. (Sun Chengwei, Zhao Jianheng, Wang Guiji, et al. Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching[J]. Advance in Mechanics, 2012, 42(4): 206-219
    [47]
    Davis J P, knudson M D, Deeney C, et al. Magnetically driven isentropic compression to multimegabar pressure using shaped current pulses on the Z accelerator[J]. Physics of Plasmas, 2005, 12: 056310. doi: 10.1063/1.1871954
    [48]
    Cauble R, Reisman D B, Asay J R, et al. Isentropic compression experiments to 1 Mbar using magnetic pressure[J]. Journal of Physics: Condensed Matter, 2002, 14(44): 10821-10824. doi: 10.1088/0953-8984/14/44/383
    [49]
    Davis J P, Knudson M D. Multi-megabar measurement of the principal quasi-isentrope for tantalum[C]//AIP Conference Proceedings. 2009, 1195: 673-676.
    [50]
    Eggert J, Bastea M, Reisman D B, et al. Ramp wave stress-density measurements of Ta and W[C]//AIP Conference Proceedings, 2007, 955: 1177-1180.
    [51]
    Asay J R, Vogler T J, Ao T, et al. Dynamic yielding of single crystal Ta at strain rates of 5×105/s[J]. Journal of Applied Physics, 2011, 109(7): 073507. doi: 10.1063/1.3562178
    [52]
    Martin M R, Lemeke R W, McBride R D, et al. Solid liner implosions on Z for producing multi-megabar, shockless compressions[J]. Physics of Plasmas, 2012, 19: 056310. doi: 10.1063/1.3694519
    [53]
    Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6): 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
    [54]
    王贵林, 张朝辉, 孙奇志, 等. 基于“聚龙一号”装置的磁驱动加载实验技术研究进展[J]. 高能量密度物理, 2020, 3(1):14-25. (Wang Guilin, Zhang Zhaohui, Sun Qizhi, et al. Progress on research of magnetically driven loading techniques using "Julong-1" device[J]. High Energy Density Physics, 2020, 3(1): 14-25
    [55]
    De Gouveia Dal Pino E M. Astrophysical jets and outflows[J]. Advances in Space Research, 2005, 35(5): 908-924. doi: 10.1016/j.asr.2005.03.145
    [56]
    Ryutov D, Drake R P, Kane J, et al. Similarity criteria for the laboratory simulation of supernova hydrodynamics[J]. The Astrophysical Journal, 1999, 518(2): 821-832. doi: 10.1086/307293
    [57]
    Ryutov D D, Drake R P, Remington B A. Criteria for scaled laboratory simulations of astrophysical MHD phenomena[J]. The Astrophysical Journal Supplement, 2000, 127(2): 465-468. doi: 10.1086/313320
    [58]
    Bellan P M. Miniconference on astrophysical jets[J]. Physics of Plasmas, 2005, 12: 058301. doi: 10.1063/1.1900563
    [59]
    Ciardi A, Lebedev S V, Frank A, et al. 3D MHD simulations of laboratory plasma jets[J]. Astrophysics and Space Science, 2007, 307: 17-22. doi: 10.1007/s10509-006-9215-8
    [60]
    Suzuki-Vidal F, Lebedev S V, Bland S N, et al. Generation of episodic magnetically driven plasma jets in a radial foil Z-pinch[J]. Physics of Plasmas, 2010, 17: 112708. doi: 10.1063/1.3504221
    [61]
    Qiang Xu, Jiakun Dan, Wang Guilin, et al. The magnetically driven plasma jet produces a pressure of 33 GPa on PTS[J]. Physics of Plasmas, 2017, 24: 010701. doi: 10.1063/1.4974038
    [62]
    Hamaguchi K, Yamauchi S, Koyama K. X-ray study of Herbig Ae/Be stars[J]. The Astrophysical Journal, 2005, 618(1): 360-384. doi: 10.1086/423192
    [63]
    Nisini B, Milillo A, Saraceno P, et al. Mass loss rates from HI infrared lines in Herbig Ae/Be stars[J]. Astronomy and Astrophysics, 1995, 302: 169.
    [64]
    Benedettini M, Nisini B, Giannini T, et al. An ISO investigation of the MWC 297 circumstellar region[J]. Astronomy and Astrophysics, 1998, 339: 159.
    [65]
    R. Bonito, S. Orlando, Peres G, et al Generation of radiative knots in a randomly pulsed protostellar jet[J]. Astronomy and Astrophysics, 2010, 517(11): A68.
    [66]
    Lin Munan, Liu Ming, Zhu Guanghui, et al. Field-reversed configuration formed by in-vessel θ-pinch in a tandem mirror device[J]. Review of Scientific Instruments, 2017, 88: 093505. doi: 10.1063/1.5001313
    [67]
    Shi Pengyu, Ren Baoming, Zheng Jian, et al. Formation of field-reversed configuration using an in-vessel odd-parity rotating magnetic field antenna in a linear device[J]. Review of Scientific Instruments, 2017, 89: 103502.
    [68]
    Liao Hui, Lin Munan, Liu Ming, et al. Translation speed measurements of hydrogen, helium, and argon field-reversed configurations in the central cell of a KMAX mirror device[J]. Plasma Science and Technology, 2019, 21: 085102. doi: 10.1088/2058-6272/ab19e8
    [69]
    Lin M, Zhan X, Zhou H, et al. High-voltage and high-current crowbar system based on pseudospark switches: from system design to verification[J]. Journal of Instrumentation, 2020, 15: P03029. doi: 10.1088/1748-0221/15/03/P03029
    [70]
    Zhang Ming, Xuan Jingjing, Yang Yong, et al. Design of high voltage pulsed power supply for HFRC[J]. IEEE Trans Plasma Science, 2020, 48(6): 1688-1692.
    [71]
    Zhao Xiaoming, Jia Yuesong. Design of a fully-fiber multi-chord interferometer and a new phase-shift demodulation method for field-reversed configuration[J]. Review of Scientific Instruments, 2014, 85: 053510. doi: 10.1063/1.4875584
    [72]
    Sun Qizhi, Yang Xianjun, Jia Yuesong, et al. Formation of field reversed configuration (FRC) on the Yingguang-I device[J]. Matter and Radiation at Extremes, 2017, 2(5): 263-274. doi: 10.1016/j.mre.2017.07.003
    [73]
    方东凡, 秦卫东, 孙奇志, 等. 夹断开关对“荧光-1”实验装置电流特性的影响[J]. 强激光与粒子束, 2018, 30:055001. (Fang Dongfan, Qin Weidong, Sun Qizhi, et al. Influence of crowbar switch on the current of the “Yingguang-1” device[J]. High Power Laser and Particle Beams, 2018, 30: 055001 doi: 10.11884/HPLPB201830.170385
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)

    Article views (1978) PDF downloads(205) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return