Zhou Xiaohong, Ren Xiaoming, Wei Chengfu, et al. Two-dimensional beam shaping for beams with large aspect ratio and variable divergence angle[J]. High Power Laser and Particle Beams, 2017, 29: 071003. doi: 10.11884/HPLPB201729.160520
Citation: Li Qin, Wang Yi, Liu Yunlong, et al. X-ray spot size measurement with pinhole[J]. High Power Laser and Particle Beams, 2021, 33: 044007. doi: 10.11884/HPLPB202133.200132

X-ray spot size measurement with pinhole

doi: 10.11884/HPLPB202133.200132
  • Received Date: 2020-05-18
  • Rev Recd Date: 2020-11-16
  • Available Online: 2021-03-17
  • Publish Date: 2021-05-02
  • The high intense pulse electron beam emitted and accelerated by linear induction accelerator (LIA) is focused to heavy metal target to produce X-ray pulses via bremsstrahlung mechanism. The X-ray is applied to high energy flash radiography. The X-ray spot size is a critical parameter for LIA and the main factor which degrades resolution of the flash radiography. This paper describes a pinhole imaging system measuring the X-ray spot size. The full width at half maximum (FWHM) of the X-ray spot size can be obtained from the pinhole image data. The modulation transfer function (MTF) which is derived from the X-ray spot image by Fourier transform is applied to calculate the 50%MTF spot size. In the continuous experiments of multi-pulse electron linear induction accelerator (MPELIA), the X-ray spot size is measured and the results demonstrate reliable performance of MPELIA. The concept of form factor is introduced, and the measured results show that the MPLIA X-ray spot distribution changes between Gaussian and Bennett distribution.
  • [1]
    宋顾周, 朱宏权, 韩长材, 等. 杆箍缩二极管X射线焦斑的成像法测量[J]. 强激光与粒子束, 2011, 23(2):531-535. (Song Guzhou, Zhu Hongquan, Han Changcai, et al. Imaging measurement of X-ray spot of rod-pinch diode radiographic source[J]. High Power Laser and Particle Beams, 2011, 23(2): 531-535 doi: 10.3788/HPLPB20112302.0531
    [2]
    李勤, 石金水, 禹海军, 等. 狭缝法测量X射线斑点大小[J]. 强激光与粒子束, 2006, 18(10):1691-1694. (Li Qin, Shi Jinshui, Yu Haijun, et al. Slit X-ray spot size measurement technique[J]. High Power Laser and Particle Beams, 2006, 18(10): 1691-1694
    [3]
    Richardson R A, Houck T L. Roll bar X-ray spot size measurement technique[C]//Proceedings of the Nineteenth International Linac Conference. 1998: 908-910.
    [4]
    李勤, 王毅, 李成刚, 等. 滚边法测量高能X射线源焦斑大小[J]. 强激光与粒子束, 2016, 28:045106. (Li Qin, Wang Yi, Li Chenggang, et al. High energy X-ray spot size measurement with rollbar[J]. High Power Laser and Particle Beams, 2016, 28: 045106
    [5]
    Stephen M M. A pinhole for producing a close-in image of an extended 14-MeV neutron source[R]. UCRL-51860, 1975.
    [6]
    Wilson D C, Christensen C R, et al. Goals for and design of a neutron pinhole imaging system for ignition capsules[J]. Review of Scientific Instruments, 2003, 74(3): 1705-1708. doi: 10.1063/1.1534392
    [7]
    Muller K H. Measurement and characterization of X-ray spot size[R]. LA-OR-89-1886, 1989.
    [8]
    施将君. 闪光照相光源尺寸和分布特性的确定[J]. 爆轰波与冲击波, 1997(4):17-23. (Shi Jiangjun. The study of radiographic X-ray size and its distribution[J]. Detonation and Shock Waves, 1997(4): 17-23
    [9]
    Ekdahl C. Characterizing flash-radiography source spots[J]. Journal of the Optical Society of America A, 2011, 28(12): 2501-2509. doi: 10.1364/JOSAA.28.002501
  • Relative Articles

    [1]Guo Linhui, Zhong Lixin, Lan Jianyu, Li Tao, Jiang Quanwei, Xie pengfei, Tan Hao, Sun Tangyou, Gao Songxin, Tang Chun. Research progress of laser wireless power transmission technology[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202537.250004
    [2]Wang Jinchuan, Li Mi, Du Jialin, Wang Dan, Li Tenglong, Wang Juntao, Zhou Tangjian, Shang Jianli, Gao Qingsong. 1.8 mJ high magnification Nd:YAG slab picosecond laser amplifier[J]. High Power Laser and Particle Beams, 2022, 34(6): 061001. doi: 10.11884/HPLPB202234.210562
    [3]Lai Wenchang, Ma Pengfei, Xiao Hu, Liu Wei, Li Can, Jiang Man, Xu Jiangming, Su Rongtao, Leng Jinyong, Ma Yanxing, Zhou Pu. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32(12): 121001. doi: 10.11884/HPLPB202032.200186
    [4]Xue Wenlong, Hu Chengzhi, Yue Wenjie, Jiang Junlin, Ding Yichen, Jiang Peipei, Wu Bo, Shen Yonghang. Yb-doped mode-locked fiber laser based on pre-chirp managed nonlinear amplification[J]. High Power Laser and Particle Beams, 2017, 29(09): 091001. doi: 10.11884/HPLPB201729.170105
    [5]Zhao Po, Yang Ruixia, Yan Lihua, An Zhenfeng. Wide-temperature-range and uncooled solid-state-laser[J]. High Power Laser and Particle Beams, 2016, 28(10): 101003. doi: 10.11884/HPLPB201628.151273
    [6]Fang Xiaoting, Yuan Shengfu, Hua Weihong, Yan Baozhu. Experimental study of small-scale direct current-discharge drived continuous-wave DF chemical laser[J]. High Power Laser and Particle Beams, 2015, 27(11): 111005. doi: 10.11884/HPLPB201527.111005
    [7]Wu Yijie, Peng Jiying, Yuan Ruixia. High repetition rate 1.34 μm Q-switched mode-locked Nd:YVO4 laser[J]. High Power Laser and Particle Beams, 2015, 27(11): 111007. doi: 10.11884/HPLPB201527.111007
    [8]Liu Jiao, Wang Juntao, Zhou Tangjian, Gao Qingsong. Analysis and developments of high-power planar waveguide lasers[J]. High Power Laser and Particle Beams, 2015, 27(06): 061015. doi: 10.11884/HPLPB201527.061015
    [9]Yao Wenming, Tan Huiming, Tian Yubing, Cui Jinjiang, Wang Fan, Dong Ningning. Continuously board-waveband tunable all-solid-state CW optical parametric oscillator based on PPMgLN[J]. High Power Laser and Particle Beams, 2013, 25(08): 2021-2026. doi: 10.3788/HPLPB20132508.2021
    [10]Zhang Zhiyong, Zhang Pu, Nie Zhiqiang, Li Xiaoning, Xiong Lingling, Liu Hui, Wang Zhenfu, Liu Xingsheng. Thermal crosstalk of high-power diode laser array[J]. High Power Laser and Particle Beams, 2013, 25(08): 1904-1910. doi: 10.3788/HPLPB20132508.1904
    [11]Qiao Hongchao, Zhao Jibin, Guo Qingyao. Development of laser system for laser peening[J]. High Power Laser and Particle Beams, 2013, 25(09): 2179-2180. doi: 10.3788/HPLPB20132509.2179
    [12]Li Bin, Li Lan, Jiao Luguang, Liu Liang, Zhou Qiong, Yuan Shengfu, Liu Wenguang. Heat transfer performance of water jet cooled mirror and its application in high power chemical lasers[J]. High Power Laser and Particle Beams, 2012, 24(01): 51-55.
    [13]Zhang Hui, Chen Yu, Wang Zhiteng, Zhao Chujun, Zhang Han. Wavelength-tunable passively Q-switched erbium-doped fiber laser with graphene-based saturable absorber[J]. High Power Laser and Particle Beams, 2012, 24(12): 2807-2810. doi: 10.3788/HPLPB20122412.2807
    [14]Yue Desheng, Li WenYu, Wang HongYan, Yang Zining, Xu Xiaojun. Alkali-vapor laser-excimer pumped alkali laser[J]. High Power Laser and Particle Beams, 2012, 24(10): 2271-2276. doi: 10.3788/HPLPB20122410.2271
    [15]zhang xiang, feng chi, xie xiying, yan lelun, lei hong, li qiang. Nanosecond electro-optically Q-switched Nd:YVO4 laser[J]. High Power Laser and Particle Beams, 2011, 23(09): 0- .
    [16]zhang qiang, wang yuefeng, hou junyan, qiang jiping, lei chengqiang, zhu xiaolei, lu tingting, duan xintao. Simulation and experimentation of high power high repetition U folded resonator laser[J]. High Power Laser and Particle Beams, 2011, 23(04): 0- .
    [17]zhang lei, lu yanhua, liu dong, tang chun, wang weimin, gao songxin. 6.2 W 589 nm yellow laser by extra-cavity sum-frequency[J]. High Power Laser and Particle Beams, 2011, 23(06): 0- .
    [18]lu yanhua, zhang lei, liu dong, ma yi, tang chun, wang weimin. 7.13 W all-solid-state 1 319 nm macro-micro pulse laser[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- .
    [19]gao qing-song, tong li-xin, chen xiao-lin, chen jun, tang chun, feng guo-ying. High pulse repetition rate double-pass amplifier with the liquid phase conjugating mirror[J]. High Power Laser and Particle Beams, 2006, 18(09): 0- .
    [20]huang zhi-long, liao da-xiong, zhang guo-biao. Test research on performance of the boundary scoop pumping diffuser[J]. High Power Laser and Particle Beams, 2006, 18(05): 0- .
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 38.3 %FULLTEXT: 38.3 %META: 58.2 %META: 58.2 %PDF: 3.6 %PDF: 3.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.0 %其他: 5.0 %其他: 1.1 %其他: 1.1 %Austria: 0.1 %Austria: 0.1 %Brazil: 0.0 %Brazil: 0.0 %Central District: 0.1 %Central District: 0.1 %China: 0.7 %China: 0.7 %France: 0.3 %France: 0.3 %India: 0.0 %India: 0.0 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Norway: 0.1 %Norway: 0.1 %Osaka: 0.1 %Osaka: 0.1 %Romania: 0.1 %Romania: 0.1 %San Lorenzo: 0.2 %San Lorenzo: 0.2 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %Taoyuan District: 0.3 %Taoyuan District: 0.3 %United States: 0.5 %United States: 0.5 %[]: 0.5 %[]: 0.5 %三明: 0.1 %三明: 0.1 %上海: 3.2 %上海: 3.2 %东京: 0.2 %东京: 0.2 %东莞: 0.3 %东莞: 0.3 %中山: 0.1 %中山: 0.1 %临汾: 0.0 %临汾: 0.0 %临沂: 0.1 %临沂: 0.1 %丹东: 0.0 %丹东: 0.0 %丽水: 0.3 %丽水: 0.3 %乌兰察布: 0.0 %乌兰察布: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %六安: 0.0 %六安: 0.0 %北京: 4.3 %北京: 4.3 %十堰: 0.2 %十堰: 0.2 %南京: 0.5 %南京: 0.5 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %厦门: 0.0 %厦门: 0.0 %台北: 0.3 %台北: 0.3 %台州: 2.1 %台州: 2.1 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %喀什: 0.0 %喀什: 0.0 %嘉兴: 0.2 %嘉兴: 0.2 %墨尔本: 0.1 %墨尔本: 0.1 %大连: 0.0 %大连: 0.0 %天津: 0.2 %天津: 0.2 %太原: 0.1 %太原: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 0.2 %宣城: 0.2 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %常州: 0.1 %常州: 0.1 %平顶山: 0.0 %平顶山: 0.0 %广州: 0.6 %广州: 0.6 %廊坊: 0.0 %廊坊: 0.0 %张家口: 2.5 %张家口: 2.5 %德里: 0.0 %德里: 0.0 %悉尼: 0.0 %悉尼: 0.0 %成都: 0.8 %成都: 0.8 %扬州: 0.1 %扬州: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %普赖恩维尔: 0.0 %普赖恩维尔: 0.0 %杭州: 1.6 %杭州: 1.6 %榆林: 0.0 %榆林: 0.0 %武汉: 0.3 %武汉: 0.3 %沃思堡: 0.2 %沃思堡: 0.2 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %淄博: 0.1 %淄博: 0.1 %淮北: 0.1 %淮北: 0.1 %深圳: 0.4 %深圳: 0.4 %温州: 0.5 %温州: 0.5 %湖州: 0.8 %湖州: 0.8 %滨州: 0.0 %滨州: 0.0 %漯河: 1.0 %漯河: 1.0 %烟台: 0.1 %烟台: 0.1 %眉山: 0.0 %眉山: 0.0 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.0 %福州: 0.0 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.6 %绵阳: 0.6 %芒廷维尤: 26.1 %芒廷维尤: 26.1 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.3 %苏州: 0.3 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.2 %衡阳: 0.2 %衢州: 1.4 %衢州: 1.4 %襄阳: 0.0 %襄阳: 0.0 %西宁: 33.6 %西宁: 33.6 %西安: 0.8 %西安: 0.8 %贵阳: 0.1 %贵阳: 0.1 %达州: 0.1 %达州: 0.1 %运城: 1.0 %运城: 1.0 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.5 %郑州: 0.5 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.2 %重庆: 0.2 %金华: 0.3 %金华: 0.3 %长春: 0.1 %长春: 0.1 %长沙: 0.6 %长沙: 0.6 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %随州: 0.0 %随州: 0.0 %青岛: 0.0 %青岛: 0.0 %首尔: 0.3 %首尔: 0.3 %其他其他AustriaBrazilCentral DistrictChinaFranceIndiaKorea Republic ofNorwayOsakaRomaniaSan LorenzoTaiwan, ChinaTaoyuan DistrictUnited States[]三明上海东京东莞中山临汾临沂丹东丽水乌兰察布佛山保定六安北京十堰南京博阿努瓦厦门台北台州合肥哈尔滨哥伦布喀什嘉兴墨尔本大连天津太原宁波安康宣城巴音郭楞常州平顶山广州廊坊张家口德里悉尼成都扬州昆明晋城普洱普赖恩维尔杭州榆林武汉沃思堡沈阳洛阳淄博淮北深圳温州湖州滨州漯河烟台眉山石家庄福州纽约绵阳芒廷维尤芝加哥苏州衡水衡阳衢州襄阳西宁西安贵阳达州运城邯郸郑州鄂州重庆金华长春长沙长治阳泉随州青岛首尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (1515) PDF downloads(95) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return