Citation: | Liu Haifeng, Li Qiong, Zhang Qili, et al. Progress on wide-range equation of state for hydrogen and deuterium[J]. High Power Laser and Particle Beams, 2021, 33: 012003. doi: 10.11884/HPLPB202133.200137 |
[1] |
McMahon J M, Morales M A, Pierleoni C, et al. The properties of hydrogen and helium under extreme conditions[J]. Rev Mod Phys, 2012, 84: 1607. doi: 10.1103/RevModPhys.84.1607
|
[2] |
Azadi S, Foulkesw M C. Fate of density functional theory in the study of high-pressure solid hydrogen[J]. Phys Rev B, 2013, 88: 014115. doi: 10.1103/PhysRevB.88.014115
|
[3] |
Knudson M D, Desjarlais M P. High-precision shock wave measurements of deuterium: evaluation of exchange correlation functions at the molecular-to-atomic transition[J]. Phys Rev Lett, 2017, 118: 035501. doi: 10.1103/PhysRevLett.118.035501
|
[4] |
Stevenson D J. Interiors of the giant planets[J]. Annu Rev Earth Planet Sci, 1982, 10: 257-295. doi: 10.1146/annurev.ea.10.050182.001353
|
[5] |
Hubbard W B, Militzer B. A preliminary Jupiter model[J]. The Astrophysical J, 2016, 820(1): 80. doi: 10.3847/0004-637X/820/1/80
|
[6] |
Wahl S M, Hubbard W B, Militzer B, et al. Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core[J]. Geophys Res Lett, 2017, 44(10): 4649. doi: 10.1002/2017GL073160
|
[7] |
Da Silva L B, Celliers P, Collins G W, et al. Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar)[J]. Phys Rev Lett, 1997, 78: 483-486. doi: 10.1103/PhysRevLett.78.483
|
[8] |
Meezan N B, Edwards M J, Hurricane O A, et al. Indirect drive ignition at the National Ignition Facility[J]. Plasma Phys Controlled Fusion, 2017, 59: 014021. doi: 10.1088/0741-3335/59/1/014021
|
[9] |
Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11: 339. doi: 10.1063/1.1578638
|
[10] |
Noh J, Fulgueras A M, Sebastian L J, et al. Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using Aspen Plus simulator[J]. Journal of Industrial and Engineering Chemistry, 2017, 46: 1-8. doi: 10.1016/j.jiec.2016.07.053
|
[11] |
Hu S, Militzer B, Goncharov V, et al. First-principles equation-of-state table of deuterium for inertial confinement fusion applications[J]. Phys Rev B, 2011, 84: 224109. doi: 10.1103/PhysRevB.84.224109
|
[12] |
Liu H F, Song H F, Zhang Q L, et al. Validation for equation of state in wide regime: Copper as prototype[J]. Matter and Radiation at Extremes, 2016, 1: 123-131. doi: 10.1016/j.mre.2016.03.002
|
[13] |
Becker A, Lorenzen W, Fortney J J, et al. Ab initio equations of state for hydrogen (H-REOS.3) and helium (He-REOS.3) and their implications for the interior of brown dwarfs[J]. Astrophys J Supp Ser, 2014, 215: 21. doi: 10.1088/0067-0049/215/2/21
|
[14] |
Morales M A, Benedict L X, Clark D S, et al. Ab initio calculations of the equation of state of hydrogen in a regime relevant for inertial fusion applications[J]. High Energy Density Phys, 2012, 8: 5-12. doi: 10.1016/j.hedp.2011.09.002
|
[15] |
More R M, Warren K H, Young D A, et al. A new quotidian equation of state (QEOS) for hot dense matter[J]. Phys Fluids, 1988, 31: 3059. doi: 10.1063/1.866963
|
[16] |
Kerley G I. Equations of state for hydrogen and deuterium[R]. SAND2003-3613, 2003.
|
[17] |
Kerley G I. A theoretical equation of state for deuterium[R]. LA-4776, 1972.
|
[18] |
Nettelmann N, Becker A, Holst B, et al. Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2)[J]. Astrophys J, 2012, 750: 52. doi: 10.1088/0004-637X/750/1/52
|
[19] |
Saumon D. A new tabular EOS for hydrogen isotopes[J] AIP Conf Proc,2007, 955: 101.
|
[20] |
Saumon D. Update to SCvH95 using statistical mechanics to produce a fluid hydrogen free energy[R]. LA-UR-13-20032, 2012.
|
[21] |
Caillabet L, Mazevet S, Loubeyre P. Multiphase equation of state of hydrogen from ab initio calculations in the range 0.2 to 5 g/cc up to 10 eV[J]. Phys Rev B, 2011, 83: 094101. doi: 10.1103/PhysRevB.83.094101
|
[22] |
Trunin R F, Urlin V D, Medvedev A B. Dynamic compression of hydrogen isotopes at megabar pressures[J]. Physics –Uspekhi, 2010, 53(6): 577-593. doi: 10.3367/UFNe.0180.201006d.0605
|
[23] |
Wang C, Zhang P. Wide range equation of state for fluid hydrogen from density function theory[J]. Phys Plasmas, 2013, 20: 092703. doi: 10.1063/1.4821839
|
[24] |
Correa A A, Benedict L X, Young D A, et al. First-principles multiphase equation of state of carbon under extreme conditions[J]. Phys Rev B, 2008, 78: 024101.
|
[25] |
Hu S X, Goncharov V N, Boehly T R, et al. Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designs[J]. Phys Plasmas, 2015, 22: 056304. doi: 10.1063/1.4917477
|
[26] |
Nellis W J, Mitchell A C, van Thiel M, et al. Equation-of-state data for molecular hydrogen and deuterium at shock pressures in the range 2-76 GPa (20-760 kbar)[J]. J Chem Phys, 1983, 79: 1480. doi: 10.1063/1.445938
|
[27] |
Knudson M D, Hanson D H, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Phys Rev Lett, 2001, 87: 225501. doi: 10.1103/PhysRevLett.87.225501
|
[28] |
Boriskov G V, Bykov A I, Il'kaev R I, et al. Shock compression of liquid deuterium up to 109 GPa[J]. Phys Rev B, 2005, 71: 092104. doi: 10.1103/PhysRevB.71.092104
|
[29] |
Hicks D G, Boehly T R, Celliers P M, et al. Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa[J]. Phys Rev B, 2009, 79: 014112. doi: 10.1103/PhysRevB.79.014112
|
[30] |
Loubeyre P, Brygoo S, Eggert J H, et al. Extended data set for the equation of state of warm dense hydrogen isotopes[J]. Phys Rev B, 2012, 86: 144115. doi: 10.1103/PhysRevB.86.144115
|
[31] |
Dick R D, Kerley G I. Shock compression data for liquids Ⅱ–Condensed hydrogen and deuterium[J]. J Chem Phys, 1980, 73: 5264. doi: 10.1063/1.439955
|
[32] |
刘海风, 张弓木, 张其黎, 等. 氢氘物态方程研究进展[J]. 高压物理学报, 2018, 32:050101. (Liu Haifeng, Zhang Gongmu, Zhang Qili, et al. Progress on equation of state of hydrogen and deuterium[J]. Chinese Journal of High Pressure Physics, 2018, 32: 050101
|
[33] |
Fernandez-Pañella A, Millot M, Fratandon D E, et al. Shock compression of liquid deuterium up to 1 TPa[J]. Phys Rev Lett, 2019, 122: 255702. doi: 10.1103/PhysRevLett.122.255702
|
[34] |
Fratanduono D E, Millot M, Fernandez Pañella A, et al. Measurement of the sound speed in dense fluid deuterium along the cryogenic liquid Hugoniot[J]. Phys Plasmas, 2019, 26: 012710. doi: 10.1063/1.5053994
|
[35] |
李琼, 刘海风, 张弓木, 等. 模拟退火算法在化学自由能模型中的应用[J]. 计算物理, 2019, 36(3):259-264. (Li Qiong, Liu Haifeng, Zhang Gongmu, et al. Application of simulated annealing method in chemical free energy model[J]. Chinese Journal of Computational Physics, 2019, 36(3): 259-264
|
[36] |
李琼, 刘海风, 张弓木. 基于化学自由能模型的氢的状态方程与压致离化研究[R]. GFI-0607-04, 2017.
Li Qiong, Liu Haifeng, Zhang Gongmu. The equation of state and pressure dissociation of hydrogen from the chemical free energy model[R]. GFI-0607-04, 2017
|
[37] |
刘海风, 张广才. 液氘的分子动力学研究[R]. GF02-035-01, 2002.
Liu Haifeng, Zhang Guangcai. The simulation of molecular dynamic for liquid deuterium[R]. GF02-035-01, 2002
|
[38] |
张其黎, 张弓木, 刘海风. 氢、氘状态方程第一原理分子动力学方法研究[R]. GFI-0412-01, 2012.
Zhang Qili, Zhang Gongmu, Liu Haifeng. The first principle molecular dynamics study the equation of states for hydrogen and deuterium[R]. GFI-0412-01, 2012
|
[39] |
张其黎, 刘海风, 张弓木. 氘氦混合物状态方程研究[R]. GFI-0412-02, 2012.
Zhang Qili, Liu Haifeng, Zhang Gongmu. The study of the equation of states for deuterium and helium mixture. GFI-0412-02, 2012
|
[40] |
张其黎, 刘海风, 李琼, 等. 氢状态方程的路径积分蒙特卡洛研究[J]. 计算物理, 2019, 36(4):379-385. (Zhang QiLi, Liu Haifeng, Li Qiong, et al. Equations of state of hydrogen studied by path integral monte carlo method[J]. Chinese Journal of computational physicse, 2019, 36(4): 379-385
|
[41] |
张其黎. 氢状态方程的理论模型研究[R]. GFI-0611-04, 2018.
Zhang Qili. The study of theory models of the equation of states for hydrogen[R], GFI-0611-04, 2018
|
[42] |
张其黎, 马桂存, 刘海风. 液氘的QEOS状态方程研究[R]. GFI-0089-01, 2009.
Zhang Qili, Ma Guicun, Liu Haifeng, The quotidian equation of state (QEOS) for liquid deuterium[R]. GFI-0089-01, 2009
|
[43] |
Span R, Lemmon E W, Jacobsen R T, et al. A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa[J]. J Phys Chem Ref Data, 2000, 29: 1361. doi: 10.1063/1.1349047
|
[44] |
Leachman J W, Jacobsen R T, Penoncello S G, et al. Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen[J]. J Phys Chem Ref Data, 2006, 38(3): 721-748.
|
[45] |
Richardson A, Leachman J W, Lemmon E W. Fundamental equation of state for deuterium[J]. J Phys Chem Ref Data, 2013, 43(1): 013103.
|
[46] |
Richardson I A, Leachman J W, Lemmon E W. Erratum: ‘‘Fundamental equation of state for deuterium’’[J]. J Phys Chem Ref Data, 2018, 47: 049901. doi: 10.1063/1.5016519
|
[47] |
耿华运, 孙毅. 氢的高压奇异结构与金属化[J]. 高压物理学报, 2018, 32:020101. (Geng Huayun, Sun Yi. On the novel structure and metallization of hydrogen under high pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32: 020101
|
[48] |
Duffy T S, Vos W L, Zha C S, et al. Sound velocities in dense hydrogen and the interior of Jupiter[J]. Science, 1994, 263: 1590. doi: 10.1126/science.263.5153.1590
|
[49] |
Hemley R J, Mao H K. Equation of state of solid hrdrogen and deuterium from single-crystal X-ray diffraction to 26.5 GPa[J]. Phys Rev B, 1990, 42: 106458.
|
[50] |
Loubeyre P, LeToullec R, Häusermann D, et al. X-ray diffraction and equation of state of hydrogen at megabar pressures[J]. Nature, 1996, 383: 702. doi: 10.1038/383702a0
|
[51] |
Hemley R J, Mao H K, Goncharov A F, et al. Synchrotron infrared spectroscopy to 0.15 eV of H2 and D2 at megabar pressures[J]. Phys Rev Lett, 1996, 76: 1667. doi: 10.1103/PhysRevLett.76.1667
|
[52] |
Rillo G, Morales M A, Ceperley D M, et al. Coupled electron-ion Monte Carlo simulation of hydrogen molecular crystals[J]. Journal of Chemical Physics, 2018, 148: 102314. doi: 10.1063/1.5001387
|
[53] |
Geng H Y, Song H X, Li J F, et al. High-pressure behavior of dense hydrogen up to 3.5 TPa from density functional theory calculations[J]. J Appl Phys, 2012, 111: 063510. doi: 10.1063/1.3694793
|
[54] |
Van Thiel M, Alder B J. Shock compression of liquid hydrogen[J]. Molecular Physics, 1966, 10(5): 427-435. doi: 10.1080/00268976600100551
|
[55] |
Brygoo S, Millot M, Loubeyre P, et al. Analysis of laser shock experiments on precompressed samples using a quartz reference and application to warm dense hydrogen and helium[J]. Journal of Applied Physics, 2015, 118: 195901. doi: 10.1063/1.4935295
|
[56] |
Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Phys Rev B, 2004, 69: 144209. doi: 10.1103/PhysRevB.69.144209
|
[57] |
贾果, 黄秀光, 谢志勇, 等. 液氘状态方程实验数据测量[J]. 物理学报, 2015, 64:166401. (Jia Guo, Huang Xiuguang, Xie Zhiyong, et al. Experimental measurement of liquid deuterium equation of state data[J]. Acta Physica Sinica, 2015, 64: 166401 doi: 10.7498/aps.64.166401
|
[58] |
Militzer B, Ceperley D M. Path integral Monte Carlo simulation of the low-density hydrogen plasma[J]. Phys Rev E, 1996, 63: 066404.
|
[59] |
Collins L A, Bickham S R, Kress J D. Dynamical and optical properties of warm dense hydrogen[J]. Phys Rev B, 2001, 63: 184110. doi: 10.1103/PhysRevB.63.184110
|
[60] |
Morales M A, Pierleoni C , Ceperley D M. Equation of state of metallic hydrogen from coupled electron-ion Monte Carlo simulations[J]. Phys Rev E, 2010, 81: 021202.
|
[61] |
Pierleoni C, Ceperley D M, Holzmann M. Coupled electron-ion Monte Carlo calculations of dense metallic hydrogen[J]. Phys Rev Lett, 2004, 93: 146402. doi: 10.1103/PhysRevLett.93.146402
|
[62] |
Filinov V S, Bonitz M, Ebeling W, et al. Thermodynamics of hot dense H-plasmas: path integral Monte Carlo simulations and analytical approximations[J]. Plasma Phys Control Fusion, 2001, 43: 743-759. doi: 10.1088/0741-3335/43/6/301
|
[63] |
Sano T, Ozaki N, Sakaiya T, et al. Laser-shock compression and Hugoniot measurements of liquid hydrogen to 55 GPa[J]. Phys Rev B, 2011, 83: 054117. doi: 10.1103/PhysRevB.83.054117
|
[64] |
Holmes N C, Ross M, Nellis W J. Temperature measurements and dissociation of shock-compressed liquid deuterium and hydrogen[J]. Phys Rev B, 1995, 52: 15835. doi: 10.1103/PhysRevB.52.15835
|
[65] |
Brody E B, Shimizu H, Mao H K, et al. Acoustic velocity and refractive index of fluid hydrogen and deuterium at high pressures[J]. J Appl Phys, 1981, 52: 3583. doi: 10.1063/1.329141
|
[66] |
Shimizu H, Brody E M, Mao H K, et al. Brillouin measurements of solid n-H2 and n-D2 to 200 kbar at room temperature[J]. Phys Rev Lett, 1981, 47: 128. doi: 10.1103/PhysRevLett.47.128
|
[67] |
何以广, 王钊, 汤秀章. 低Z流体的单次冲击波压缩极限[J]. 强激光与粒子束, 2010, 22(10):2432-2436. (He Yiguang, Wang Zhao, Tang Xiuzhang. Single-shock compression limit of low-Z fluids[J]. High Power Laser and Particle Beams, 2010, 22(10): 2432-2436 doi: 10.3788/HPLPB20102210.2432
|
[68] |
王聪, 贺贤土, 张平. 氢及其同位素宽区状态方程的核量子效应[J]. 强激光与粒子束, 2015, 27:032008. (Wang Cong, He Xiantu, Zhang Ping. Quantum nuclear effects in the wide range equations of states for hydrogen and its isotopes[J]. High Power Laser and Particle Beams, 2015, 27: 032008 doi: 10.11884/HPLPB201527.032008
|
[69] |
Gregoryanz E, Ji Cheng, Dalladay-Simpson P, et al. Everything you always wanted to know about metallic hydrogen but were afraid to ask[J]. Matter and Radiation at Extremes, 2020, 5: 038101. doi: 10.1063/5.0002104
|
[70] |
Ji Cheng, Li Bing, Liu Wenjun, et al. Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen[J]. Matter and Radiation at Extremes, 2020, 5: 038401. doi: 10.1063/5.0003288
|
[71] |
Zeldovich Y B, Raizer Y R. Physics of shock waves and high temperature hydrodynamic phenomena[M]. Cambridge: Cambridge University Press, 1966.
|
[72] |
Nellis W J. Shock compression of deuterium near 100 GPa pressures[J]. Phys Rev Lett, 2002, 89: 165502. doi: 10.1103/PhysRevLett.89.165502
|