Volume 33 Issue 1
Nov.  2020
Turn off MathJax
Article Contents
Liu Haifeng, Li Qiong, Zhang Qili, et al. Progress on wide-range equation of state for hydrogen and deuterium[J]. High Power Laser and Particle Beams, 2021, 33: 012003. doi: 10.11884/HPLPB202133.200137
Citation: Liu Haifeng, Li Qiong, Zhang Qili, et al. Progress on wide-range equation of state for hydrogen and deuterium[J]. High Power Laser and Particle Beams, 2021, 33: 012003. doi: 10.11884/HPLPB202133.200137

Progress on wide-range equation of state for hydrogen and deuterium

doi: 10.11884/HPLPB202133.200137
  • Received Date: 2020-05-20
  • Rev Recd Date: 2020-07-07
  • Publish Date: 2020-11-19
  • Hydrogen is the most abundant element in nature and an important object of astrophysics and ICF research. This paper briefly presents an overview of the research progress in wide-range equation of state and especially comments assessment of the most recent shock compression experiments on Omega laser facility and the theoretical models. Based on the previous work, the wide-range equation of state of hydrogen is constructed by using the improved chemical free energy model, the first-principle numerical simulation results and the multi-parameter equation of state model, which is applicable in the temperature range of 20−108 K and the density range of 10−7−2000 g/cm3. Compared with experimental results, such as those of shock compression experiment, static high pressure isotherm experiment and sound velocity experiment, the newly-constructed wide-range equation of state for hydrogen has high confidence and provides high precision data for astrophysics, inertial confinement fusion, international thermonuclear experimental reactor and other engineering physics designs. The construction and validation method of the hydrogen wide-range equation of state can also be applied to its isotope deuterium. In comparison with current models published abroad, the deuterium wide-range equation of state constructed by this method is in better agreement with the experimental data of principal and secondary Hugoniot published in 2019. This paper also points out the temperature-density regimesthat need attention in future research.
  • loading
  • [1]
    McMahon J M, Morales M A, Pierleoni C, et al. The properties of hydrogen and helium under extreme conditions[J]. Rev Mod Phys, 2012, 84: 1607. doi: 10.1103/RevModPhys.84.1607
    [2]
    Azadi S, Foulkesw M C. Fate of density functional theory in the study of high-pressure solid hydrogen[J]. Phys Rev B, 2013, 88: 014115. doi: 10.1103/PhysRevB.88.014115
    [3]
    Knudson M D, Desjarlais M P. High-precision shock wave measurements of deuterium: evaluation of exchange correlation functions at the molecular-to-atomic transition[J]. Phys Rev Lett, 2017, 118: 035501. doi: 10.1103/PhysRevLett.118.035501
    [4]
    Stevenson D J. Interiors of the giant planets[J]. Annu Rev Earth Planet Sci, 1982, 10: 257-295. doi: 10.1146/annurev.ea.10.050182.001353
    [5]
    Hubbard W B, Militzer B. A preliminary Jupiter model[J]. The Astrophysical J, 2016, 820(1): 80. doi: 10.3847/0004-637X/820/1/80
    [6]
    Wahl S M, Hubbard W B, Militzer B, et al. Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core[J]. Geophys Res Lett, 2017, 44(10): 4649. doi: 10.1002/2017GL073160
    [7]
    Da Silva L B, Celliers P, Collins G W, et al. Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar)[J]. Phys Rev Lett, 1997, 78: 483-486. doi: 10.1103/PhysRevLett.78.483
    [8]
    Meezan N B, Edwards M J, Hurricane O A, et al. Indirect drive ignition at the National Ignition Facility[J]. Plasma Phys Controlled Fusion, 2017, 59: 014021. doi: 10.1088/0741-3335/59/1/014021
    [9]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11: 339. doi: 10.1063/1.1578638
    [10]
    Noh J, Fulgueras A M, Sebastian L J, et al. Estimation of thermodynamic properties of hydrogen isotopes and modeling of hydrogen isotope systems using Aspen Plus simulator[J]. Journal of Industrial and Engineering Chemistry, 2017, 46: 1-8. doi: 10.1016/j.jiec.2016.07.053
    [11]
    Hu S, Militzer B, Goncharov V, et al. First-principles equation-of-state table of deuterium for inertial confinement fusion applications[J]. Phys Rev B, 2011, 84: 224109. doi: 10.1103/PhysRevB.84.224109
    [12]
    Liu H F, Song H F, Zhang Q L, et al. Validation for equation of state in wide regime: Copper as prototype[J]. Matter and Radiation at Extremes, 2016, 1: 123-131. doi: 10.1016/j.mre.2016.03.002
    [13]
    Becker A, Lorenzen W, Fortney J J, et al. Ab initio equations of state for hydrogen (H-REOS.3) and helium (He-REOS.3) and their implications for the interior of brown dwarfs[J]. Astrophys J Supp Ser, 2014, 215: 21. doi: 10.1088/0067-0049/215/2/21
    [14]
    Morales M A, Benedict L X, Clark D S, et al. Ab initio calculations of the equation of state of hydrogen in a regime relevant for inertial fusion applications[J]. High Energy Density Phys, 2012, 8: 5-12. doi: 10.1016/j.hedp.2011.09.002
    [15]
    More R M, Warren K H, Young D A, et al. A new quotidian equation of state (QEOS) for hot dense matter[J]. Phys Fluids, 1988, 31: 3059. doi: 10.1063/1.866963
    [16]
    Kerley G I. Equations of state for hydrogen and deuterium[R]. SAND2003-3613, 2003.
    [17]
    Kerley G I. A theoretical equation of state for deuterium[R]. LA-4776, 1972.
    [18]
    Nettelmann N, Becker A, Holst B, et al. Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2)[J]. Astrophys J, 2012, 750: 52. doi: 10.1088/0004-637X/750/1/52
    [19]
    Saumon D. A new tabular EOS for hydrogen isotopes[J] AIP Conf Proc,2007, 955: 101.
    [20]
    Saumon D. Update to SCvH95 using statistical mechanics to produce a fluid hydrogen free energy[R]. LA-UR-13-20032, 2012.
    [21]
    Caillabet L, Mazevet S, Loubeyre P. Multiphase equation of state of hydrogen from ab initio calculations in the range 0.2 to 5 g/cc up to 10 eV[J]. Phys Rev B, 2011, 83: 094101. doi: 10.1103/PhysRevB.83.094101
    [22]
    Trunin R F, Urlin V D, Medvedev A B. Dynamic compression of hydrogen isotopes at megabar pressures[J]. Physics –Uspekhi, 2010, 53(6): 577-593. doi: 10.3367/UFNe.0180.201006d.0605
    [23]
    Wang C, Zhang P. Wide range equation of state for fluid hydrogen from density function theory[J]. Phys Plasmas, 2013, 20: 092703. doi: 10.1063/1.4821839
    [24]
    Correa A A, Benedict L X, Young D A, et al. First-principles multiphase equation of state of carbon under extreme conditions[J]. Phys Rev B, 2008, 78: 024101.
    [25]
    Hu S X, Goncharov V N, Boehly T R, et al. Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designs[J]. Phys Plasmas, 2015, 22: 056304. doi: 10.1063/1.4917477
    [26]
    Nellis W J, Mitchell A C, van Thiel M, et al. Equation-of-state data for molecular hydrogen and deuterium at shock pressures in the range 2-76 GPa (20-760 kbar)[J]. J Chem Phys, 1983, 79: 1480. doi: 10.1063/1.445938
    [27]
    Knudson M D, Hanson D H, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Phys Rev Lett, 2001, 87: 225501. doi: 10.1103/PhysRevLett.87.225501
    [28]
    Boriskov G V, Bykov A I, Il'kaev R I, et al. Shock compression of liquid deuterium up to 109 GPa[J]. Phys Rev B, 2005, 71: 092104. doi: 10.1103/PhysRevB.71.092104
    [29]
    Hicks D G, Boehly T R, Celliers P M, et al. Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa[J]. Phys Rev B, 2009, 79: 014112. doi: 10.1103/PhysRevB.79.014112
    [30]
    Loubeyre P, Brygoo S, Eggert J H, et al. Extended data set for the equation of state of warm dense hydrogen isotopes[J]. Phys Rev B, 2012, 86: 144115. doi: 10.1103/PhysRevB.86.144115
    [31]
    Dick R D, Kerley G I. Shock compression data for liquids Ⅱ–Condensed hydrogen and deuterium[J]. J Chem Phys, 1980, 73: 5264. doi: 10.1063/1.439955
    [32]
    刘海风, 张弓木, 张其黎, 等. 氢氘物态方程研究进展[J]. 高压物理学报, 2018, 32:050101. (Liu Haifeng, Zhang Gongmu, Zhang Qili, et al. Progress on equation of state of hydrogen and deuterium[J]. Chinese Journal of High Pressure Physics, 2018, 32: 050101
    [33]
    Fernandez-Pañella A, Millot M, Fratandon D E, et al. Shock compression of liquid deuterium up to 1 TPa[J]. Phys Rev Lett, 2019, 122: 255702. doi: 10.1103/PhysRevLett.122.255702
    [34]
    Fratanduono D E, Millot M, Fernandez Pañella A, et al. Measurement of the sound speed in dense fluid deuterium along the cryogenic liquid Hugoniot[J]. Phys Plasmas, 2019, 26: 012710. doi: 10.1063/1.5053994
    [35]
    李琼, 刘海风, 张弓木, 等. 模拟退火算法在化学自由能模型中的应用[J]. 计算物理, 2019, 36(3):259-264. (Li Qiong, Liu Haifeng, Zhang Gongmu, et al. Application of simulated annealing method in chemical free energy model[J]. Chinese Journal of Computational Physics, 2019, 36(3): 259-264
    [36]
    李琼, 刘海风, 张弓木. 基于化学自由能模型的氢的状态方程与压致离化研究[R]. GFI-0607-04, 2017.

    Li Qiong, Liu Haifeng, Zhang Gongmu. The equation of state and pressure dissociation of hydrogen from the chemical free energy model[R]. GFI-0607-04, 2017
    [37]
    刘海风, 张广才. 液氘的分子动力学研究[R]. GF02-035-01, 2002.

    Liu Haifeng, Zhang Guangcai. The simulation of molecular dynamic for liquid deuterium[R]. GF02-035-01, 2002
    [38]
    张其黎, 张弓木, 刘海风. 氢、氘状态方程第一原理分子动力学方法研究[R]. GFI-0412-01, 2012.

    Zhang Qili, Zhang Gongmu, Liu Haifeng. The first principle molecular dynamics study the equation of states for hydrogen and deuterium[R]. GFI-0412-01, 2012
    [39]
    张其黎, 刘海风, 张弓木. 氘氦混合物状态方程研究[R]. GFI-0412-02, 2012.

    Zhang Qili, Liu Haifeng, Zhang Gongmu. The study of the equation of states for deuterium and helium mixture. GFI-0412-02, 2012
    [40]
    张其黎, 刘海风, 李琼, 等. 氢状态方程的路径积分蒙特卡洛研究[J]. 计算物理, 2019, 36(4):379-385. (Zhang QiLi, Liu Haifeng, Li Qiong, et al. Equations of state of hydrogen studied by path integral monte carlo method[J]. Chinese Journal of computational physicse, 2019, 36(4): 379-385
    [41]
    张其黎. 氢状态方程的理论模型研究[R]. GFI-0611-04, 2018.

    Zhang Qili. The study of theory models of the equation of states for hydrogen[R], GFI-0611-04, 2018
    [42]
    张其黎, 马桂存, 刘海风. 液氘的QEOS状态方程研究[R]. GFI-0089-01, 2009.

    Zhang Qili, Ma Guicun, Liu Haifeng, The quotidian equation of state (QEOS) for liquid deuterium[R]. GFI-0089-01, 2009
    [43]
    Span R, Lemmon E W, Jacobsen R T, et al. A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa[J]. J Phys Chem Ref Data, 2000, 29: 1361. doi: 10.1063/1.1349047
    [44]
    Leachman J W, Jacobsen R T, Penoncello S G, et al. Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen[J]. J Phys Chem Ref Data, 2006, 38(3): 721-748.
    [45]
    Richardson A, Leachman J W, Lemmon E W. Fundamental equation of state for deuterium[J]. J Phys Chem Ref Data, 2013, 43(1): 013103.
    [46]
    Richardson I A, Leachman J W, Lemmon E W. Erratum: ‘‘Fundamental equation of state for deuterium’’[J]. J Phys Chem Ref Data, 2018, 47: 049901. doi: 10.1063/1.5016519
    [47]
    耿华运, 孙毅. 氢的高压奇异结构与金属化[J]. 高压物理学报, 2018, 32:020101. (Geng Huayun, Sun Yi. On the novel structure and metallization of hydrogen under high pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32: 020101
    [48]
    Duffy T S, Vos W L, Zha C S, et al. Sound velocities in dense hydrogen and the interior of Jupiter[J]. Science, 1994, 263: 1590. doi: 10.1126/science.263.5153.1590
    [49]
    Hemley R J, Mao H K. Equation of state of solid hrdrogen and deuterium from single-crystal X-ray diffraction to 26.5 GPa[J]. Phys Rev B, 1990, 42: 106458.
    [50]
    Loubeyre P, LeToullec R, Häusermann D, et al. X-ray diffraction and equation of state of hydrogen at megabar pressures[J]. Nature, 1996, 383: 702. doi: 10.1038/383702a0
    [51]
    Hemley R J, Mao H K, Goncharov A F, et al. Synchrotron infrared spectroscopy to 0.15 eV of H2 and D2 at megabar pressures[J]. Phys Rev Lett, 1996, 76: 1667. doi: 10.1103/PhysRevLett.76.1667
    [52]
    Rillo G, Morales M A, Ceperley D M, et al. Coupled electron-ion Monte Carlo simulation of hydrogen molecular crystals[J]. Journal of Chemical Physics, 2018, 148: 102314. doi: 10.1063/1.5001387
    [53]
    Geng H Y, Song H X, Li J F, et al. High-pressure behavior of dense hydrogen up to 3.5 TPa from density functional theory calculations[J]. J Appl Phys, 2012, 111: 063510. doi: 10.1063/1.3694793
    [54]
    Van Thiel M, Alder B J. Shock compression of liquid hydrogen[J]. Molecular Physics, 1966, 10(5): 427-435. doi: 10.1080/00268976600100551
    [55]
    Brygoo S, Millot M, Loubeyre P, et al. Analysis of laser shock experiments on precompressed samples using a quartz reference and application to warm dense hydrogen and helium[J]. Journal of Applied Physics, 2015, 118: 195901. doi: 10.1063/1.4935295
    [56]
    Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Phys Rev B, 2004, 69: 144209. doi: 10.1103/PhysRevB.69.144209
    [57]
    贾果, 黄秀光, 谢志勇, 等. 液氘状态方程实验数据测量[J]. 物理学报, 2015, 64:166401. (Jia Guo, Huang Xiuguang, Xie Zhiyong, et al. Experimental measurement of liquid deuterium equation of state data[J]. Acta Physica Sinica, 2015, 64: 166401 doi: 10.7498/aps.64.166401
    [58]
    Militzer B, Ceperley D M. Path integral Monte Carlo simulation of the low-density hydrogen plasma[J]. Phys Rev E, 1996, 63: 066404.
    [59]
    Collins L A, Bickham S R, Kress J D. Dynamical and optical properties of warm dense hydrogen[J]. Phys Rev B, 2001, 63: 184110. doi: 10.1103/PhysRevB.63.184110
    [60]
    Morales M A, Pierleoni C , Ceperley D M. Equation of state of metallic hydrogen from coupled electron-ion Monte Carlo simulations[J]. Phys Rev E, 2010, 81: 021202.
    [61]
    Pierleoni C, Ceperley D M, Holzmann M. Coupled electron-ion Monte Carlo calculations of dense metallic hydrogen[J]. Phys Rev Lett, 2004, 93: 146402. doi: 10.1103/PhysRevLett.93.146402
    [62]
    Filinov V S, Bonitz M, Ebeling W, et al. Thermodynamics of hot dense H-plasmas: path integral Monte Carlo simulations and analytical approximations[J]. Plasma Phys Control Fusion, 2001, 43: 743-759. doi: 10.1088/0741-3335/43/6/301
    [63]
    Sano T, Ozaki N, Sakaiya T, et al. Laser-shock compression and Hugoniot measurements of liquid hydrogen to 55 GPa[J]. Phys Rev B, 2011, 83: 054117. doi: 10.1103/PhysRevB.83.054117
    [64]
    Holmes N C, Ross M, Nellis W J. Temperature measurements and dissociation of shock-compressed liquid deuterium and hydrogen[J]. Phys Rev B, 1995, 52: 15835. doi: 10.1103/PhysRevB.52.15835
    [65]
    Brody E B, Shimizu H, Mao H K, et al. Acoustic velocity and refractive index of fluid hydrogen and deuterium at high pressures[J]. J Appl Phys, 1981, 52: 3583. doi: 10.1063/1.329141
    [66]
    Shimizu H, Brody E M, Mao H K, et al. Brillouin measurements of solid n-H2 and n-D2 to 200 kbar at room temperature[J]. Phys Rev Lett, 1981, 47: 128. doi: 10.1103/PhysRevLett.47.128
    [67]
    何以广, 王钊, 汤秀章. 低Z流体的单次冲击波压缩极限[J]. 强激光与粒子束, 2010, 22(10):2432-2436. (He Yiguang, Wang Zhao, Tang Xiuzhang. Single-shock compression limit of low-Z fluids[J]. High Power Laser and Particle Beams, 2010, 22(10): 2432-2436 doi: 10.3788/HPLPB20102210.2432
    [68]
    王聪, 贺贤土, 张平. 氢及其同位素宽区状态方程的核量子效应[J]. 强激光与粒子束, 2015, 27:032008. (Wang Cong, He Xiantu, Zhang Ping. Quantum nuclear effects in the wide range equations of states for hydrogen and its isotopes[J]. High Power Laser and Particle Beams, 2015, 27: 032008 doi: 10.11884/HPLPB201527.032008
    [69]
    Gregoryanz E, Ji Cheng, Dalladay-Simpson P, et al. Everything you always wanted to know about metallic hydrogen but were afraid to ask[J]. Matter and Radiation at Extremes, 2020, 5: 038101. doi: 10.1063/5.0002104
    [70]
    Ji Cheng, Li Bing, Liu Wenjun, et al. Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen[J]. Matter and Radiation at Extremes, 2020, 5: 038401. doi: 10.1063/5.0003288
    [71]
    Zeldovich Y B, Raizer Y R. Physics of shock waves and high temperature hydrodynamic phenomena[M]. Cambridge: Cambridge University Press, 1966.
    [72]
    Nellis W J. Shock compression of deuterium near 100 GPa pressures[J]. Phys Rev Lett, 2002, 89: 165502. doi: 10.1103/PhysRevLett.89.165502
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article views (1414) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return