Citation: | Gong Tao, Hao Liang, Li Zhichao, et al. Development and application of the theoretical models for stimulated scattering processes[J]. High Power Laser and Particle Beams, 2021, 33: 012007. doi: 10.11884/HPLPB202133.200140 |
[1] |
Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
|
[2] |
Lindl J, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
|
[3] |
Kruer W L. The physics of laser plasma interactions[M]. Redwood: Addison-Wesley, 1988.
|
[4] |
Tang C L. Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process[J]. Journal of Applied Physics, 1966, 37(8): 2945-2955. doi: 10.1063/1.1703144
|
[5] |
Labaune C, Baldis H A, Bauer B S. Time-resolved measurements of secondary Langmuir waves produced by the Langmuir decay instability in a laser-produced plasma[J]. Physics of Plasmas, 1998, 5(1): 234-242. doi: 10.1063/1.872692
|
[6] |
Depierreux S, Labaune C, Fuchs J, et al. Langmuir decay instability cascade in laser-plasma experiments[J]. Physical Review Letters, 2002, 89: 045001. doi: 10.1103/PhysRevLett.89.045001
|
[7] |
Bandulet H C, Labaune C, Lewis K, et al. Thomson-scattering study of the subharmonic decay of ion-acoustic waves driven by the Brillouin instability[J]. Physical Review Letters, 2004, 93: 035002. doi: 10.1103/PhysRevLett.93.035002
|
[8] |
Niemann C, Glenzer S H, Knight J, et al. Observation of the parametric two-ion decay instability with Thomson scattering[J]. Physical Review Letters, 2004, 93: 045004. doi: 10.1103/PhysRevLett.93.045004
|
[9] |
Morales G J, O’neil T M. Nonlinear frequency-shift of an electron-plasma wave[J]. Physical Review Letters, 1972, 28(7): 417-420. doi: 10.1103/PhysRevLett.28.417
|
[10] |
Giacone R E, Vu H X. Nonlinear kinetic simulations of stimulated Brillouin scattering[J]. Physics of Plasmas, 1998, 5(5): 1455-1460. doi: 10.1063/1.872803
|
[11] |
Froula D H, Divol L, Glenzer S H. Measurements of nonlinear growth of ion-acoustic waves in two-ion-species plasmas with Thomson scattering[J]. Physical Review Letters, 2002, 88: 105003. doi: 10.1103/PhysRevLett.88.105003
|
[12] |
Divol L, Berger R L, Cohen B I, et al. Modeling the nonlinear saturation of stimulated Brillouin backscatter in laser heated plasmas[J]. Physics of Plasmas, 2003, 10(5): 1822-1828. doi: 10.1063/1.1557055
|
[13] |
李志超. 大尺度激光等离子体相互作用的实验研究[D]. 合肥: 中国科学技术大学, 2011: 12-14.
Li Zhichao. Experimental research on large-scale laser-plasma interactions[D]. Hefei: University of Science and Technology of China, 2011: 12-14
|
[14] |
龚韬. 激光间接驱动惯性约束聚变中受激散射过程的理论和实验研究[D]. 合肥: 中国科学技术大学, 2015: 52-58.
Gong Tao. Theoretical and experimental study on the stimulated scattering in laser indirect-drive inertial confinement fusion[D]. Hefei: University of Science and Technology of China, 2015: 52-58
|
[15] |
Meezan N B, Berger R L, Divol L, et al. Role of hydrodynamics simulations in laser-plasma interaction predictive capability[J]. Physics of Plasmas, 2007, 14: 056304. doi: 10.1063/1.2710782
|
[16] |
Froula D H, Divol L, Meezan N B, et al. Ideal laser-beam propagation through high-temperature ignition hohlraum plasmas[J]. Physical Review Letters, 2007, 98: 085001. doi: 10.1103/PhysRevLett.98.085001
|
[17] |
Froula D H, Divol L, Meezan N B, et al. Laser beam propagation through inertial confinement fusion hohlraum plasmas[J]. Physics of Plasmas, 2007, 14: 055705. doi: 10.1063/1.2515054
|
[18] |
Hinkel D E, Callahan D A, Langdon A B, et al. Analyses of laser-plasma interactions in National Ignition Facility ignition targets[J]. Physics of Plasmas, 2008, 15: 056314. doi: 10.1063/1.2901127
|
[19] |
Neumayer P, Berger R L, Callahan D, et al. Energetics of multiple-ion species hohlraum plasmas[J]. Physics of Plasmas, 2008, 15: 056307. doi: 10.1063/1.2890126
|
[20] |
Hinkel D E, Rosen M D, Williams E A, et al. Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility[J]. Physics of Plasmas, 2011, 18: 056312. doi: 10.1063/1.3577836
|
[21] |
Neumayer P, Berger R L, Divol L, et al. Suppression of stimulated Brillouin scattering by increased Landau damping in multiple-ion-species hohlraum plasmas[J]. Physical Review Letters, 2008, 100: 105001. doi: 10.1103/PhysRevLett.100.105001
|
[22] |
Froula D H, Divol L, London R A, et al. Pushing the limits of plasma length in inertial-fusion laser-plasma interaction experiments[J]. Physical Review Letters, 2008, 100: 015002. doi: 10.1103/PhysRevLett.100.015002
|
[23] |
Rosenbluth M N. Parametric instabilities in inhomogeneous media[J]. Physical Review Letters, 1972, 29(9): 565-567. doi: 10.1103/PhysRevLett.29.565
|
[24] |
Liu C S, Rosenbluth M N, White R B. Raman and Brillouin-scattering of electromagnetic-waves in inhomogeneous plasmas[J]. Physics of Fluids, 1974, 17(6): 1211-1219. doi: 10.1063/1.1694867
|
[25] |
Ramani A, Max C E. Stimulated Brillouin-scattering in an inhomogeneous-plasma with broad-bandwidth thermal noise[J]. Physics of Fluids, 1983, 26(4): 1079-1102. doi: 10.1063/1.864220
|
[26] |
Berger R L, Williams E A, Simon A. Effect of plasma noise spectrum on stimulated scattering in inhomogeneous-plasma[J]. Physics of Fluids B, 1989, 1(2): 414-421. doi: 10.1063/1.859155
|
[27] |
Mounaix P, Pesme D, Casanova M. Nonlinear reflectivity of an inhomogeneous plasma in the strongly damped regime[J]. Physical Review E, 1997, 55(4): 4653-4664. doi: 10.1103/PhysRevE.55.4653
|
[28] |
Berger R L, Still C H, Williams E A, et al. On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams[J]. Physics of Plasmas, 1998, 5(12): 4337-4356. doi: 10.1063/1.873171
|
[29] |
Strozzi D J, Williams E A, Hinkel D E, et al. Ray-based calculations of backscatter in laser fusion targets[J]. Physics of Plasmas, 2008, 15: 102703. doi: 10.1063/1.2992522
|
[30] |
Strozzi D J, Bailey D S, Michel P, et al. Interplay of laser-plasma interactions and inertial fusion hydrodynamics[J]. Physical Review Letters, 2017, 118: 025002. doi: 10.1103/PhysRevLett.118.025002
|
[31] |
Hall G N, Jones O S, Strozzi D J, et al. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 052706. doi: 10.1063/1.4983142
|
[32] |
Sodha M S, Sharma R P, Kaushik S C. Interaction of intense laser beams with plasma waves: Stimulated Raman scattering[J]. Journal of Applied Physics, 1976, 47(8): 3518-3523. doi: 10.1063/1.323194
|
[33] |
Sodha M S, Umesh G, Sharma R P. Enhanced Brillouin scattering of a Gaussian laser beam from a plasma[J]. Journal of Applied Physics, 1979, 50(7): 4678-4684. doi: 10.1063/1.326577
|
[34] |
Sharma R P, Vyas A, Singh R K. Effect of laser beam filamentation on coexisting stimulated Raman and Brillouin scattering[J]. Physics of Plasmas, 2013, 20: 102108. doi: 10.1063/1.4824738
|
[35] |
Vyas A, Singh R K, Sharma R P. Combined effect of relativistic and ponderomotive filamentation on coexisting stimulated Raman and Brillouin scattering[J]. Physics of Plasmas, 2014, 21: 112113. doi: 10.1063/1.4902107
|
[36] |
Amin M R, Capjack C E, Frycz P, et al. Two-dimensional simulations of stimulated Brillouin-scattering in laser-produced plasmas[J]. Physical Review Letters, 1993, 71(1): 81-84. doi: 10.1103/PhysRevLett.71.81
|
[37] |
Amin M R, Capjack C E, Frycz P, et al. Two-dimensional studies of stimulated Brillouin scattering, filamentation, and self-focusing instabilities of laser light in plasmas[J]. Physics of Fluids B, 1993, 5(10): 3748-3764. doi: 10.1063/1.860845
|
[38] |
Divol L, Berger R L, Meezan N B, et al. Three-dimensional modeling of stimulated Brillouin scattering in ignition-scale experiments[J]. Physical Review Letters, 2008, 100: 255001. doi: 10.1103/PhysRevLett.100.255001
|
[39] |
Divol L, Berger R L, Meezan N B, et al. Three-dimensional modeling of laser-plasma interaction: Benchmarking our predictive modeling tools versus experiments[J]. Physics of Plasmas, 2008, 15: 056313. doi: 10.1063/1.2844361
|
[40] |
Berger R L, Suter L J, Divol L, et al. Beyond the gain exponent: Effect of damping, scale length, and speckle length on stimulated scatter[J]. Physical Review E, 2015, 91: 031103. doi: 10.1103/PhysRevE.91.031103
|
[41] |
Berger R L, Thomas C A, Baker K L, et al. Stimulated backscatter of laser light from BigFoot hohlraums on the National Ignition Facility[J]. Physics of Plasmas, 2019, 26: 012709. doi: 10.1063/1.5079234
|
[42] |
李志超, 张小丁, 杨冬, 等. 神光Ⅲ原型受激拉曼与受激布里渊散射份额测量[J]. 强激光与粒子束, 2010, 22(8):1891-1895. (Li Zhichao, Zhang Xiaoding, Yang Dong, et al. Energy fraction measurements of stimulated Brillouin scattering and stimulated Raman scattering on Shenguang-III prototype laser facility[J]. High Power Laser and Particle Beams, 2010, 22(8): 1891-1895 doi: 10.3788/HPLPB20102208.1891
|
[43] |
Li Zhichao, Zheng Jian, Ding Yongkun, et al. Generation and characterization of millimeter-scale plasmas for the research of laser plasma interactions on Shenguang-III prototype[J]. Chinese Physics B, 2010, 19:125202.
|
[44] |
LiZhichao, Zheng Jian, Jiang Xiaohua, et al. Methods of generation and detailed characterization of millimeter-scale plasmas using a gasbag target[J]. Chinese Physics Letters, 2011, 28: 125202. doi: 10.1088/0256-307X/28/12/125202
|
[45] |
Li Zhichao, Zheng Jian, Jiang Xiaohua, et al. Interaction of 0.53 μm laser pulse with millimeter-scale plasmas generated by gasbag target[J]. Physics of Plasmas, 2012, 19: 062703. doi: 10.1063/1.4729332
|
[46] |
Hao Liang, Zhao Yiqing, Yang Dong, et al. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code[J]. Physics of Plasmas, 2014, 21: 072705. doi: 10.1063/1.4890019
|
[47] |
杨冬, 李志超, 李三伟, 等. 间接驱动惯性约束聚变中的激光等离子体不稳定性[J]. 中国科学: 物理学 力学 天文学, 2018, 48:065203. (Yang Dong, Li Zhichao, Li Sanwei, et al. Laser plasma instability in indirect-drive inertial confinement fusion[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48: 065203
|
[48] |
Hao Liang, Yang Dong, Li Xin, et al. Investigation on laser plasma instability of the outer ring beams on SGIII laser facility[J]. AIP Advances, 2019, 9: 095201. doi: 10.1063/1.5087936
|
[49] |
Gong Tao, Hao Liang, Li Zhichao, et al. Recent research progress of laser plasma interactions in Shenguang laser facilities[J]. Matter and Radiation at Extremes, 2019, 4: 055202. doi: 10.1063/1.5092446
|
[50] |
Hao L, Liu Z J, Hu X Y, et al. Competition between the stimulated Raman and Brillouin scattering under the strong damping condition[J]. Laser and Particle Beams, 2013, 31(2): 203-209. doi: 10.1017/S0263034613000074
|
[51] |
Hao L, Hu X Y, Zheng C Y, et al. Study of crossed-beam energy transfer process with large crossing angle in three-dimension[J]. Laser and Particle Beams, 2016, 34(2): 270-275. doi: 10.1017/S0263034616000082
|
[52] |
Liu Z J, Zhu S P, Cao L H, et al. Enhancement of backward Raman scattering by electron-ion collisions[J]. Physics of Plasmas, 2009, 16: 112703. doi: 10.1063/1.3258839
|
[53] |
刘占军, 郝亮, 项江, 等. 激光聚变中受激布里渊散射的混合模拟研究[J]. 物理学报, 2012, 61:115202. (Liu Zhanjun, Hao Liang, Xiang Jiang, et al. Hybrid simulation of stimulated Brillouin scattering in laser fusions[J]. Acta Physica Sinica, 2012, 61: 115202 doi: 10.7498/aps.61.115202
|
[54] |
Liu Z J, Li B, Hu X Y, et al. The light diffraction effect on stimulated Raman scattering[J]. Physics of Plasmas, 2016, 23: 022705. doi: 10.1063/1.4941967
|
[55] |
Hu Xiaoyan, Hao Liang, Liu Zhanjun, et al. The development of laser-plasma interaction program LAP3D on thousands of processors[J]. AIP Advances, 2015, 5: 087174. doi: 10.1063/1.4929775
|
[56] |
Gong Tao, Li Zhichao, Zhao Bin, et al. Noise sources and competition between stimulated Brillouin and Raman scattering: A one-dimensional steady-state approach[J]. Physics of Plasmas, 2013, 20: 092702. doi: 10.1063/1.4821827
|
[57] |
Gong Tao, ZhengJian, Li Zhichao, et al. Mitigating stimulated scattering processes in gas-filled hohlraums via external magnetic fields[J]. Physics of Plasmas, 2015, 22: 092706. doi: 10.1063/1.4931077
|
[58] |
Gong Tao, Zheng Jian, Li Zhichao, et al. Frequency mismatch in stimulated scattering processes: An important factor for the transverse distribution of scattered light[J]. Physics of Plasmas, 2016, 23: 063303. doi: 10.1063/1.4954391
|
[59] |
Hao L, Yan R, Li J, et al. Nonlinear fluid simulation study of stimulated Raman and Brillouin scatterings in shock ignition[J]. Physics of Plasmas, 2017, 24: 062709. doi: 10.1063/1.4989702
|
[60] |
Drake J F, Kaw P K, Lee Y C, et al. Parametric-instabilities of electromagnetic-waves in plasmas[J]. Physics of Fluids, 1974, 17(4): 778-785. doi: 10.1063/1.1694789
|
[61] |
Alexandrov A, Bogdankevich L, Rukhadze A. Principles of plasma electrodynamics[M]. Berlin: Springer-Verlag, 1984.
|
[62] |
Montgomery D S, Afeyan B B, Cobble J A, et al. Evidence of plasma fluctuations and their effect on the growth of stimulated Brillouin and stimulated Raman scattering in laser plasmas[J]. Physics of Plasmas, 1998, 5(5): 1973-1980. doi: 10.1063/1.872868
|
[63] |
Tikhonchuk V T, Huller S, Mounaix P. Effect of the speckle self-focusing on the stationary stimulated Brillouin scattering reflectivity from a randomized laser beam in an inhomogeneous plasma[J]. Physics of Plasmas, 1997, 4(12): 4369-4381. doi: 10.1063/1.872599
|