Yang Jisen, Pan Weimin, Wang Honglei, et al. Digital self-excited vertical test system of superconducting cavity[J]. High Power Laser and Particle Beams, 2020, 32: 045106. doi: 10.11884/HPLPB202032.190320
Citation: Fang Qingyuan, Wang Tong, Ji Qizheng, et al. Analysis of spacecraft charging onset using secondary electron yield[J]. High Power Laser and Particle Beams, 2021, 33: 023007. doi: 10.11884/HPLPB202133.200149

Analysis of spacecraft charging onset using secondary electron yield

doi: 10.11884/HPLPB202133.200149
  • Received Date: 2020-05-31
  • Rev Recd Date: 2020-08-29
  • Publish Date: 2021-01-07
  • The interaction between space plasma and spacecraft results into the onset of spacecraft surface charging and the resultant electrostatic discharging events. The computation of spacecraft surface charging is commonly accomplished using the secondary electron yield of spacecraft surface irradiated by mono-energetic electrons. To depict the charging environment more precisely and obtain more reliable computation results, focusing the spacecraft charging problem under the worst charging condition and taking into accounts the double-Maxwellian plasma distribution, the threshold equation controlling the onset charging is derived based on the averaged secondary electron yield. This equation is useful to analyze spacecraft charging under the condition of election irradiation with a continuous energy spectrum. Besides, the adoption of double-Maxwellian plasma distribution could better model the space plasma condition in the case of magnetospheric substorm. By theoretical analysis, the ambient plasma is divided into two typical situations according to the charging characteristics of spacecraft surface charging. Through simulation computation, the trend of spacecraft surface charging versus plasma parameters fluctuations is obtained for these two typical situations. Results show that higher electron temperature corresponds to more severe charging with higher negative potential; meanwhile, the density ratio of the two electron components in double-Maxwellian plasma distribution plays an important role in spacecraft surface charging. The obtained conclusions could provide useful reference for quantitative analysis of spacecraft surface severe charging events.
  • [1]
    胡小锋, 张建平, 许滨. 航天器空间静电效应研究进展[J]. 强激光与粒子束, 2019, 31:103202. (Hu Xiaofeng, Zhang Jianping, Xu Bin. Progress of the research of space electrostatic effect of spacecraft[J]. High Power Laser and Particle Beams, 2019, 31: 103202 doi: 10.11884/HPLPB201931.190247
    [2]
    Langmuir I, Blodgett K B. Currents limited by space charge between concentric spheres[J]. Physical Review, 1924, 24(1): 49-59. doi: 10.1103/PhysRev.24.49
    [3]
    蒋锴, 王先荣, 秦晓刚, 等. 大型低轨道载人航天器电位主动控制[J]. 航空学报, 2019, 37(5):1563-1572. (Jiang Kai, Wang Xianrong, Qin Xiaogang, et al. Large manned spacecraft with active potential control at LEO[J]. Acta Aeronautica ET Astronautica Sinica, 2019, 37(5): 1563-1572
    [4]
    Huang Jianguo, Jiang Lixiang, Wang Song. Onset of spacecraft charging and potential jump in geosynchronous plasma[J]. IEEE Transactions on Plasma, 2017, 45(8): 1976-1984. doi: 10.1109/TPS.2017.2719712
    [5]
    Lai S T, Della-Rose D J. Spacecraft charging at geosynchronous altitudes: New evidence of existence of critical temperature[J]. Journal of Spacecraft and Rockets, 2001, 38(6): 922-928. doi: 10.2514/2.3764
    [6]
    Lai S T. Spacecraft charging thresholds in single and double Maxwellian space environments[J]. IEEE Transactions on Nuclear Science, 1991, 38(6): 1629-1634. doi: 10.1109/23.124155
    [7]
    Huang Jianguo, Liu Guoqing, Jiang Lixiang. Threshold for spacecraft charging in double-Maxwellian plasma[J]. Journal of Geophysical Research: Space Physics, 2015, 120(8): 6301-6308. doi: 10.1002/2015JA021173
    [8]
    Lai S T, Tautz M. High-level spacecraft charging in eclipse at geosynchronous altitudes: A statistical study[J]. Journal of Geophysical Research, 2006, 111(A09201).
    [9]
    Lai S T. Fundamentals of spacecraft charging-spacecraft interactions with space plasma[M]. Princeton: Princeton University Press, 2012.
    [10]
    Mullen E G, Gussenhoven M S, Hardy D A, et al. SCATHA survey of high-level spacecraft charging in sunlight[J]. Review of Geophysics and Space Physics, 1986, 91: 1464-1490.
  • Relative Articles

    [1]Fang Jinyong, Zhai Chang, Wu Jiangniu, Li Qiwei. A method for generating high power comb spectrum microwave[J]. High Power Laser and Particle Beams, 2023, 35(8): 083003. doi: 10.11884/HPLPB202335.230050
    [2]Liu Chang. High power and high-efficiency miniaturized power amplifier with compact microstrip resonant cell[J]. High Power Laser and Particle Beams, 2023, 35(10): 103001. doi: 10.11884/HPLPB202335.230192
    [3]Sun Jiangning, Pan Xiaodong, Lu Xinfu, Wan Haojiang, Wei Guanghui. Performance analysis and development of high-power and high-linearity current injection probes[J]. High Power Laser and Particle Beams, 2021, 33(5): 053008. doi: 10.11884/HPLPB202133.200350
    [4]Li Ya’nan, Liu Shishuo, Cai Jun. Design of high-power wide-band G-band third harmonic amplifier[J]. High Power Laser and Particle Beams, 2021, 33(3): 033002. doi: 10.11884/HPLPB202133.200251
    [5]Zhao Juan, Li Bo, Li Xiqin, Cao Ningxiang, Huang Bin, Yu Zhiguo, Zhang Xin, Wang Lan, Li Hongtao. Design and actualization of high electromagnetic compatibility high power constant-current supply[J]. High Power Laser and Particle Beams, 2018, 30(2): 025007. doi: 10.11884/HPLPB201830.170359
    [6]Ma Qiaosheng, Zhang Yunjian, Li Zhenghong, Wu Yang. Design of high power terahertz backward wave oscillator[J]. High Power Laser and Particle Beams, 2016, 28(09): 093004. doi: 10.11884/HPLPB201628.160002
    [7]Wang Wei, Liu Yi, Shen Yi, Xia Liansheng, Yang Chao, Ye Mao. Experimental study of high gain PCSS triggered by high-power pulse laser diode[J]. High Power Laser and Particle Beams, 2016, 28(09): 095003. doi: 10.11884/HPLPB201628.150883
    [8]Yang Shi, Ren Shuqing, Lai Dingguo, Zhang Yuying, Yang Li, Yao Weibo, Zhang Yongmin. High power high voltage constant current capacitor charging power supply[J]. High Power Laser and Particle Beams, 2015, 27(09): 095006. doi: 10.11884/HPLPB201527.095006
    [9]Wang Xuefeng, Wang Jianguo, Wang Guangqiang, Li Shuang, Xiong Zhengfeng, Lu Xicheng, Peng Jianchang. Performance analysis of a sensing element for high power terahertz pulse measurement[J]. High Power Laser and Particle Beams, 2014, 26(08): 083103. doi: 10.11884/HPLPB201426.083103
    [10]Jiang Kai, Li Peixu, Zhang Xin, Tang Qingmin, Xia Wei, Xu Xiangang. High power 940 nm quantum well laser with asymmetric structure[J]. High Power Laser and Particle Beams, 2014, 26(05): 051022. doi: 10.11884/HPLPB201426.051022
    [11]Sun Hao, Wang Efeng, Zhu Yuan, Zeng Xu, Feng Jinjun, Yan Tiechang. Thermal stability analysis of the collector in W band gyrotron traveling-wave tube[J]. High Power Laser and Particle Beams, 2014, 26(11): 113002. doi: 10.11884/HPLPB201426.113002
    [12]huang wei, chang shaohui, chen zhizhan, shi erwei. On-state characteristics of an 11 kV high-power SiC photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [13]huang wei, chang shaohui, chen zhizhan, shi erwei. On-state characteristics of an 11 kV high-power SiC photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [14]liu hongwei, yuan jianqiang, liu jinfeng, li hongtao, xie weiping, jiang weihua. Experimental investigation on lifetime of high power GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [15]yuan jianqiang, li hongtao, liu hongwei, liu jinfeng, xie weiping, wang xinxin, jiang weihua. Study on high-power photoconductive semiconductor switches[J]. High Power Laser and Particle Beams, 2010, 22(04): 0- .
    [16]lin yuanchao, liu qingxiang, zang jiefeng. Transmission of foil-focused relativistic annular electron beam in coaxial cylindrical waveguide[J]. High Power Laser and Particle Beams, 2009, 21(06): 0- .
    [17]li zaijin, hu liming, wang ye, zhang xing, wang xiangpeng, qin li, liu yun, wang lijun. High power high duty-cycle 808 nm wavelength laser diode[J]. High Power Laser and Particle Beams, 2009, 21(11): 0- .
    [18]hu yulu, yang zhonghai, li bin, li jianqing, ma shanshan, huang tao, jin xiaolin. Analysis of static trajectories in traveling wave tubes[J]. High Power Laser and Particle Beams, 2009, 21(12): 0- .
    [19]he xiao-hai, lin li-bin, zhang hui-jun, zhan jia-xue, li qi, zhao jian-hua, jia chao-wei. Development of 1.2 MV high power DC generator[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [20]zhao feng-li, liu jin-tong, zhou yao-xiang. Development of high power waveguide valve for BEPCⅡ-Linac[J]. High Power Laser and Particle Beams, 2006, 18(02): 0- .
  • Cited by

    Periodical cited type(2)

    1. 左靖凡,李士锋,吴洋,黄华,孙利民,宋法伦. 带双腔反射器的X波段低磁场过模相对论返波管振荡器. 强激光与粒子束. 2024(03): 63-68 . 本站查看
    2. 张晓微,李永东,白现臣,梁玉钦. 宽间隙反射器相对论返波管同频高阶模式抑制. 强激光与粒子束. 2015(07): 127-132 . 本站查看

    Other cited types(1)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.7 %FULLTEXT: 20.7 %META: 67.1 %META: 67.1 %PDF: 12.2 %PDF: 12.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.8 %其他: 8.8 %其他: 0.8 %其他: 0.8 %Bradford: 0.2 %Bradford: 0.2 %Japan: 1.1 %Japan: 1.1 %San Lorenzo: 0.2 %San Lorenzo: 0.2 %Taichung: 0.3 %Taichung: 0.3 %Tiran: 0.1 %Tiran: 0.1 %[]: 1.9 %[]: 1.9 %丁克尔舍尔本: 0.3 %丁克尔舍尔本: 0.3 %上海: 2.4 %上海: 2.4 %不列颠哥伦比亚: 0.1 %不列颠哥伦比亚: 0.1 %东莞: 0.4 %东莞: 0.4 %中卫: 0.1 %中卫: 0.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %丽水: 0.1 %丽水: 0.1 %伊斯坦布尔: 0.2 %伊斯坦布尔: 0.2 %佛山: 0.2 %佛山: 0.2 %佛罗里达州: 0.1 %佛罗里达州: 0.1 %保定: 0.2 %保定: 0.2 %六安: 0.3 %六安: 0.3 %兰州: 0.1 %兰州: 0.1 %北京: 7.1 %北京: 7.1 %北海: 0.1 %北海: 0.1 %十堰: 0.3 %十堰: 0.3 %南京: 0.8 %南京: 0.8 %南宁: 0.1 %南宁: 0.1 %南昌: 0.2 %南昌: 0.2 %南通: 0.1 %南通: 0.1 %台北: 0.3 %台北: 0.3 %台州: 0.4 %台州: 0.4 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.2 %唐山: 0.2 %嘉兴: 0.3 %嘉兴: 0.3 %多伦多: 0.1 %多伦多: 0.1 %天津: 1.6 %天津: 1.6 %太原: 0.1 %太原: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.1 %安康: 0.1 %宜宾: 0.2 %宜宾: 0.2 %宣城: 0.5 %宣城: 0.5 %宿迁: 0.1 %宿迁: 0.1 %密蘇里城: 0.2 %密蘇里城: 0.2 %巴中: 0.1 %巴中: 0.1 %巴登-符腾堡州: 0.1 %巴登-符腾堡州: 0.1 %布尔萨: 0.1 %布尔萨: 0.1 %布达佩斯: 0.1 %布达佩斯: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.5 %常德: 0.5 %广州: 0.6 %广州: 0.6 %廊坊: 0.1 %廊坊: 0.1 %延边: 0.1 %延边: 0.1 %张家口: 0.7 %张家口: 0.7 %徐州: 0.2 %徐州: 0.2 %德黑兰: 0.8 %德黑兰: 0.8 %成都: 2.9 %成都: 2.9 %扬州: 0.3 %扬州: 0.3 %新余: 0.1 %新余: 0.1 %无锡: 0.2 %无锡: 0.2 %昆明: 0.6 %昆明: 0.6 %晋城: 0.3 %晋城: 0.3 %普洱: 0.1 %普洱: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.0 %杭州: 1.0 %武汉: 2.0 %武汉: 2.0 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.7 %济南: 0.7 %深圳: 1.4 %深圳: 1.4 %温州: 0.3 %温州: 0.3 %渭南: 0.1 %渭南: 0.1 %湖州: 0.5 %湖州: 0.5 %漯河: 1.7 %漯河: 1.7 %漳州: 0.1 %漳州: 0.1 %珠海: 0.2 %珠海: 0.2 %班加罗尔: 0.1 %班加罗尔: 0.1 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %米兰: 0.2 %米兰: 0.2 %绵阳: 2.2 %绵阳: 2.2 %耶拿: 0.2 %耶拿: 0.2 %芒廷维尤: 18.0 %芒廷维尤: 18.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.3 %苏州: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 20.0 %西宁: 20.0 %西安: 0.4 %西安: 0.4 %诺沃克: 3.4 %诺沃克: 3.4 %贵阳: 0.6 %贵阳: 0.6 %费利蒙: 0.1 %费利蒙: 0.1 %赤峰: 0.1 %赤峰: 0.1 %运城: 1.1 %运城: 1.1 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.8 %郑州: 0.8 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %铁岭: 0.1 %铁岭: 0.1 %长春: 0.3 %长春: 0.3 %长沙: 2.9 %长沙: 2.9 %长治: 0.1 %长治: 0.1 %阿坝: 0.1 %阿坝: 0.1 %青岛: 0.6 %青岛: 0.6 %香港: 0.1 %香港: 0.1 %其他其他BradfordJapanSan LorenzoTaichungTiran[]丁克尔舍尔本上海不列颠哥伦比亚东莞中卫中山临汾丹东丽水伊斯坦布尔佛山佛罗里达州保定六安兰州北京北海十堰南京南宁南昌南通台北台州合肥哈尔滨哥伦布唐山嘉兴多伦多天津太原娄底宁波安康宜宾宣城宿迁密蘇里城巴中巴登-符腾堡州布尔萨布达佩斯常州常德广州廊坊延边张家口徐州德黑兰成都扬州新余无锡昆明晋城普洱朝阳杭州武汉沈阳洛阳济南深圳温州渭南湖州漯河漳州珠海班加罗尔石家庄福州秦皇岛米兰绵阳耶拿芒廷维尤芝加哥苏州衡阳衢州西宁西安诺沃克贵阳费利蒙赤峰运城遵义邯郸郑州鄂州重庆铁岭长春长沙长治阿坝青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (1199) PDF downloads(38) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return