Gao Yongwei, Chen Wenjun, Yao Junjie, et al. Coordinate unification between treatment room and the robot system of Heavy Ion Medical Machine[J]. High Power Laser and Particle Beams, 2023, 35: 064002. doi: 10.11884/HPLPB202335.220313
Citation: Zhang Junjie, Li Jianbing, Zhou Dongfang, et al. Miniaturized tri-band balanced filter based on a novel asymmetric stepped impedance resonator with self-coupling[J]. High Power Laser and Particle Beams, 2021, 33: 023006. doi: 10.11884/HPLPB202133.200153

Miniaturized tri-band balanced filter based on a novel asymmetric stepped impedance resonator with self-coupling

doi: 10.11884/HPLPB202133.200153
  • Received Date: 2020-06-04
  • Rev Recd Date: 2020-11-11
  • Publish Date: 2021-01-07
  • For the application requirements of high integration and high selectivity of balanced filters, this paper proposes a novel balanced tri-band filter with high selectivity, which is based on an improved asymmetric stepped impedance resonator structure with self-coupling. Firstly, through the differential mode and common mode equivalent circuits of the balanced filter, the resonant characteristics of the resonator structure are specifically analyzed, and the first three resonance modes under the differential mode equivalent circuit are used to form three passbands respectively. In addition, by loading capacitors and resistance elements on the symmetrical surface of the circuit, the suppression of CM signals can be improved without affecting DM signals based on the proposed multimode balanced filter structure and design method, and a balanced tri-band filter with passband frequencies of 2.75/4.46/6.21 GHz was designed, processed and tested. The results show that the structure can achieve a compact size and high selection characteristics, and has good common mode rejection characteristics.
  • [1]
    陈建忠, 梁昌洪, 吴边, 等. 紧凑型高共模抑制微带平衡滤波器[J]. 西安电子科技大学学报(自然科学版), 2012, 39(4):7-10. (Chen Jianzhong, Liang Changhong, Wu Bian, et al. Design of compact microstrip balanced filter with high common-mode suppression[J]. Journal of Xidian University (Natural Science), 2012, 39(4): 7-10
    [2]
    吕大龙, 刘庆, 张俊杰, 等. 小型化多层双模基片集成波导平衡带通滤波器[J]. 强激光与粒子束, 2020, 32:033001. (Lü Dalong, Liu qing, Zhang Junjie, et al. Compact balanced bandpass filters based on multilayer dual-mode substrate integrated waveguide cavities[J]. High Power Laser and Particle Beams, 2020, 32: 033001
    [3]
    张友俊, 袁晓芳. 一种新型小型化平衡双通带滤波器[J]. 固体电子学研究与进展, 2017, 37(6):419-423. (Zhang Youjun, Yuan Xiaofang. Design of a miniature balanced dual-band bandpass filter[J]. Research & Progress of Solid State Electronics, 2017, 37(6): 419-423
    [4]
    张雨静, 李蕴力, 陈建新. 平衡式双通带独立可控带通滤波器[J]. 重庆邮电大学学报(自然科学版), 2018, 30(5):668-672. (Zhang Yujing, Li Yunli, Chen Jianxin. Balanced bandpass filter with independently controllable dual passbands[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2018, 30(5): 668-672
    [5]
    Liu H, Song Y, Ren B, et al. Balanced tri-band bandpass filter design using octo-section stepped-impedance ring resonator with open stubs[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(10): 912-914. doi: 10.1109/LMWC.2017.2748340
    [6]
    Wei F, Guo Y J, Qin P Y, et al. Compact balanced dual- and tri-band bandpass filters based on stub loaded resonators[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(2): 76-78. doi: 10.1109/LMWC.2014.2370233
    [7]
    Cho Y H, Yun S W. Design of balanced dual-band bandpass filters using asymmetrical coupled lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(8): 2814-2820. doi: 10.1109/TMTT.2013.2269051
    [8]
    Zhang S X, Qiu L L, Chu Q X. Multiband balanced filters with controllable bandwidths based on slotline coupling feed[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(11): 974-976. doi: 10.1109/LMWC.2017.2750026
    [9]
    Wu X, Wan F, Ge J. Stub-loaded theory and its application to balanced dual-band bandpass filter design[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(4): 1-3. doi: 10.1109/LMWC.2016.2540120
    [10]
    Wei F, Qin P Y, Guo Y J, et al. Compact balanced dual- and tri-band BPFs based on coupled complementary split-ring resonators (C-CSRR)[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(2): 1-3. doi: 10.1109/LMWC.2016.2521118
    [11]
    Liu H, Wang Z, Hu S, et al. Design of tri-band balanced filter with wideband common-mode suppression and upper stopband using square ring loaded resonator[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019.
    [12]
    Zhang S, Zhu L. Compact tri-band bandpass filter based on λ/4 resonators with U-folded coupled-line[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(5): 258-260. doi: 10.1109/LMWC.2013.2255868
    [13]
    Guan Xuehui, Peng Yang, Liu Haiwen, et al. Compact triple-band high-temperature superconducting filter using coupled-line stepped impedance resonator[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 1-5.
    [14]
    Hong J S, Lancaster M J. Microwave filters for RF/microwave applications[M]. New York: Wiley Press, 2011.
    [15]
    Page J E, Esteban J, Camacho-Penalosa C. Lattice equivalent circuits of transmission-line and coupled-line sections[J]. IEEE Transactions on Microwave Theory & Techniques, 2011, 59(10): 2422-2430.
  • Relative Articles

    [1]Wu Min’gan, Liu Yi, Lin Fuchang, Liu Siwei, Sun Jianjun. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32(4): 045002. doi: 10.11884/HPLPB202032.190356
    [2]Yu Liang, Sugai Taichi, Tokuchi Akira, Jiang Weihua. Repetitive pulsed power generator based on inductive-energy-storage pulse forming line[J]. High Power Laser and Particle Beams, 2018, 30(2): 025006. doi: 10.11884/HPLPB201830.170390
    [3]Luo Kui, Fu Sizu, Huang Xiuguang, He Zhiyu, Jia Guo, Shu Hua, He Hao, Xia Miao. Electrical conductivity of liquid deuterium under laser-driven shock loading[J]. High Power Laser and Particle Beams, 2017, 29(08): 082002. doi: 10.11884/HPLPB201729.170564
    [4]Jiang Weihua. Repetition rate pulsed power technology and its applications:(vii) Major challenges and future trends[J]. High Power Laser and Particle Beams, 2015, 27(01): 010201. doi: 10.11884/HPLPB201527.010201
    [5]Jiang Weihua. Repetition rate pulsed power technology and its applications:(ⅵ) Typical applications[J]. High Power Laser and Particle Beams, 2014, 26(03): 030201. doi: 10.3788/HPLPB201426.030201
    [6]Jiang Weihua. Repetition rate pulsed power technology and its applications:(iv) Advantage and limitation of semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(03): 537-543. doi: 10.3788/HPLPB20132503.0537
    [7]Jiang Weihua. Repetition rate pulsed power technology and its applications:(Ⅴ) The implication of pulse adding[J]. High Power Laser and Particle Beams, 2013, 25(08): 1877-1882. doi: 10.3788/HPLPB20132508.1877
    [8]Chen Wen, Fan Chengyu, Wang Haitao, Zhang Pengfei, Zhang Jinghui, Qiao Chunhong, Ma Huimin. Numerical study on prolonging lifetime of plasma channels generated by ultra-short laser pulses[J]. High Power Laser and Particle Beams, 2013, 25(04): 813-816.
    [9]Jiang Weihua. Repetition rate pulsed power technology and its applications: (i) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(01): 10-15.
    [10]Jiang Weihua. Repetition rate pulsed power technology and its applications: (iii) The role of magnetic switches[J]. High Power Laser and Particle Beams, 2012, 24(06): 1269-1275. doi: 10.3788/HPLPB20122406.1269
    [11]Wang Haitao, Fan Chengyu, Shen Hong, Qiao Chunhong, Zhang Jinghui, Zhang Pengfei, Ma Huimin, Xu Huiling. Temporal evolution of plasma density in femtosecond light filaments[J]. High Power Laser and Particle Beams, 2012, 24(05): 1024-1028. doi: 10.3788/HPLPB20122405.1024
    [12]Tong Xin, Li Xiao’ang, Zhao Junping, Zhang Qiaogen. Arc radius and resistance measurement of spark gap switch[J]. High Power Laser and Particle Beams, 2012, 24(03): 647-650. doi: 10.3788/HPLPB20122403.0647
    [13]zhang zehai, shu ting, zhang jun, liu jing, zhu jun. Suppression of parasitic mode oscillation in relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- .
    [14]jin zhaoxin, jiao qingjie, chen xi, jing xiaopeng. Helical flux compression generator utilizing detonation products of aluminized explosive to compress magnetic flux[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- .
    [15]jiang weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- .
    [16]tang enling, zhang qingming, zhang jian. Conductivity measurement of an expanding plasma cloud generated by hypervelocity impact LY12 aluminum target[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- .
    [17]li sheng-yin, wu wei-dong, wang feng, wang xue-min, tang yong-jian, sun wei-guo. Effects of Fe-embedding on microstructure and electrical properties of diamond like carbon films[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- .
    [18]gao jing-ming, liu yong-gui, yin yi, yang jian-hua. Numerical simulation of gas spark gap discharge[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- .
    [19]lin chen, zhang li-wen, qin xiao, gao jun-yi. Conductivity of self-guided laser plasma channel produced by femtosecond laser pulses in air[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- .
    [20]xie wei-ping, gong xing-gen, hao shi-rong, sun qi-zhi, liu lie-fang, dai wen-feng, liu zheng-fen, wang min-hua, han wen-hui, dai ying-ming, ding bo-nan. The generation of high Voltage by MFCG through combined Pulse power conditioning system[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- .
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 33.3 %FULLTEXT: 33.3 %META: 61.1 %META: 61.1 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %其他: 1.2 %其他: 1.2 %China: 0.4 %China: 0.4 %France: 0.8 %France: 0.8 %Germany: 0.2 %Germany: 0.2 %India: 0.1 %India: 0.1 %Japan: 0.5 %Japan: 0.5 %Nahant: 0.2 %Nahant: 0.2 %Netherlands: 0.2 %Netherlands: 0.2 %United States: 0.2 %United States: 0.2 %[]: 0.7 %[]: 0.7 %三明: 0.1 %三明: 0.1 %上海: 3.2 %上海: 3.2 %东莞: 0.1 %东莞: 0.1 %中山: 0.1 %中山: 0.1 %丹东: 0.1 %丹东: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.1 %兰州: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 3.5 %北京: 3.5 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.4 %合肥: 0.4 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.4 %大连: 0.4 %天津: 0.4 %天津: 0.4 %宜春: 0.1 %宜春: 0.1 %宣城: 0.2 %宣城: 0.2 %常州: 0.2 %常州: 0.2 %广州: 0.1 %广州: 0.1 %开封: 0.1 %开封: 0.1 %弗吉尼亚州: 0.1 %弗吉尼亚州: 0.1 %张家口: 0.4 %张家口: 0.4 %徐州: 0.1 %徐州: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 0.7 %成都: 0.7 %扬州: 0.3 %扬州: 0.3 %新乡: 0.1 %新乡: 0.1 %新加坡: 0.2 %新加坡: 0.2 %无锡: 0.4 %无锡: 0.4 %昌吉: 0.1 %昌吉: 0.1 %普洱: 0.1 %普洱: 0.1 %普赖恩维尔: 0.2 %普赖恩维尔: 0.2 %杜伊斯堡: 0.1 %杜伊斯堡: 0.1 %杭州: 0.9 %杭州: 0.9 %梅州: 0.1 %梅州: 0.1 %武威: 0.1 %武威: 0.1 %武汉: 2.3 %武汉: 2.3 %沃思堡: 0.2 %沃思堡: 0.2 %沈阳: 0.5 %沈阳: 0.5 %泉州: 0.1 %泉州: 0.1 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 0.1 %温州: 0.1 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.1 %湘潭: 0.1 %漯河: 1.1 %漯河: 1.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.7 %福州: 0.7 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽瓦克: 0.4 %纽瓦克: 0.4 %纽约州: 0.1 %纽约州: 0.1 %绵阳: 0.3 %绵阳: 0.3 %芒廷维尤: 22.4 %芒廷维尤: 22.4 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 39.8 %西宁: 39.8 %西安: 1.7 %西安: 1.7 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.2 %运城: 1.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.4 %郑州: 0.4 %重庆: 0.5 %重庆: 0.5 %长沙: 1.9 %长沙: 1.9 %长治: 0.1 %长治: 0.1 %青岛: 0.1 %青岛: 0.1 %其他其他ChinaFranceGermanyIndiaJapanNahantNetherlandsUnited States[]三明上海东莞中山丹东保定兰州加利福尼亚州北京十堰南京南通台州合肥哥伦布嘉兴大庆大连天津宜春宣城常州广州开封弗吉尼亚州张家口徐州惠州成都扬州新乡新加坡无锡昌吉普洱普赖恩维尔杜伊斯堡杭州梅州武威武汉沃思堡沈阳泉州泸州洛阳济南深圳温州湖州湘潭漯河烟台石家庄福州秦皇岛纽瓦克纽约州绵阳芒廷维尤芝加哥苏州衢州西宁西安贵阳运城邯郸郑州重庆长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views (999) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return