Citation: | Zhang Junjie, Li Jianbing, Zhou Dongfang, et al. Miniaturized tri-band balanced filter based on a novel asymmetric stepped impedance resonator with self-coupling[J]. High Power Laser and Particle Beams, 2021, 33: 023006. doi: 10.11884/HPLPB202133.200153 |
[1] |
陈建忠, 梁昌洪, 吴边, 等. 紧凑型高共模抑制微带平衡滤波器[J]. 西安电子科技大学学报(自然科学版), 2012, 39(4):7-10. (Chen Jianzhong, Liang Changhong, Wu Bian, et al. Design of compact microstrip balanced filter with high common-mode suppression[J]. Journal of Xidian University (Natural Science), 2012, 39(4): 7-10
|
[2] |
吕大龙, 刘庆, 张俊杰, 等. 小型化多层双模基片集成波导平衡带通滤波器[J]. 强激光与粒子束, 2020, 32:033001. (Lü Dalong, Liu qing, Zhang Junjie, et al. Compact balanced bandpass filters based on multilayer dual-mode substrate integrated waveguide cavities[J]. High Power Laser and Particle Beams, 2020, 32: 033001
|
[3] |
张友俊, 袁晓芳. 一种新型小型化平衡双通带滤波器[J]. 固体电子学研究与进展, 2017, 37(6):419-423. (Zhang Youjun, Yuan Xiaofang. Design of a miniature balanced dual-band bandpass filter[J]. Research & Progress of Solid State Electronics, 2017, 37(6): 419-423
|
[4] |
张雨静, 李蕴力, 陈建新. 平衡式双通带独立可控带通滤波器[J]. 重庆邮电大学学报(自然科学版), 2018, 30(5):668-672. (Zhang Yujing, Li Yunli, Chen Jianxin. Balanced bandpass filter with independently controllable dual passbands[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2018, 30(5): 668-672
|
[5] |
Liu H, Song Y, Ren B, et al. Balanced tri-band bandpass filter design using octo-section stepped-impedance ring resonator with open stubs[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(10): 912-914. doi: 10.1109/LMWC.2017.2748340
|
[6] |
Wei F, Guo Y J, Qin P Y, et al. Compact balanced dual- and tri-band bandpass filters based on stub loaded resonators[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(2): 76-78. doi: 10.1109/LMWC.2014.2370233
|
[7] |
Cho Y H, Yun S W. Design of balanced dual-band bandpass filters using asymmetrical coupled lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(8): 2814-2820. doi: 10.1109/TMTT.2013.2269051
|
[8] |
Zhang S X, Qiu L L, Chu Q X. Multiband balanced filters with controllable bandwidths based on slotline coupling feed[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(11): 974-976. doi: 10.1109/LMWC.2017.2750026
|
[9] |
Wu X, Wan F, Ge J. Stub-loaded theory and its application to balanced dual-band bandpass filter design[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(4): 1-3. doi: 10.1109/LMWC.2016.2540120
|
[10] |
Wei F, Qin P Y, Guo Y J, et al. Compact balanced dual- and tri-band BPFs based on coupled complementary split-ring resonators (C-CSRR)[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(2): 1-3. doi: 10.1109/LMWC.2016.2521118
|
[11] |
Liu H, Wang Z, Hu S, et al. Design of tri-band balanced filter with wideband common-mode suppression and upper stopband using square ring loaded resonator[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019.
|
[12] |
Zhang S, Zhu L. Compact tri-band bandpass filter based on λ/4 resonators with U-folded coupled-line[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(5): 258-260. doi: 10.1109/LMWC.2013.2255868
|
[13] |
Guan Xuehui, Peng Yang, Liu Haiwen, et al. Compact triple-band high-temperature superconducting filter using coupled-line stepped impedance resonator[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 1-5.
|
[14] |
Hong J S, Lancaster M J. Microwave filters for RF/microwave applications[M]. New York: Wiley Press, 2011.
|
[15] |
Page J E, Esteban J, Camacho-Penalosa C. Lattice equivalent circuits of transmission-line and coupled-line sections[J]. IEEE Transactions on Microwave Theory & Techniques, 2011, 59(10): 2422-2430.
|
[1] | Wu Min’gan, Liu Yi, Lin Fuchang, Liu Siwei, Sun Jianjun. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32(4): 045002. doi: 10.11884/HPLPB202032.190356 |
[2] | Yu Liang, Sugai Taichi, Tokuchi Akira, Jiang Weihua. Repetitive pulsed power generator based on inductive-energy-storage pulse forming line[J]. High Power Laser and Particle Beams, 2018, 30(2): 025006. doi: 10.11884/HPLPB201830.170390 |
[3] | Luo Kui, Fu Sizu, Huang Xiuguang, He Zhiyu, Jia Guo, Shu Hua, He Hao, Xia Miao. Electrical conductivity of liquid deuterium under laser-driven shock loading[J]. High Power Laser and Particle Beams, 2017, 29(08): 082002. doi: 10.11884/HPLPB201729.170564 |
[4] | Jiang Weihua. Repetition rate pulsed power technology and its applications:(vii) Major challenges and future trends[J]. High Power Laser and Particle Beams, 2015, 27(01): 010201. doi: 10.11884/HPLPB201527.010201 |
[5] | Jiang Weihua. Repetition rate pulsed power technology and its applications:(ⅵ) Typical applications[J]. High Power Laser and Particle Beams, 2014, 26(03): 030201. doi: 10.3788/HPLPB201426.030201 |
[6] | Jiang Weihua. Repetition rate pulsed power technology and its applications:(iv) Advantage and limitation of semiconductor switches[J]. High Power Laser and Particle Beams, 2013, 25(03): 537-543. doi: 10.3788/HPLPB20132503.0537 |
[7] | Jiang Weihua. Repetition rate pulsed power technology and its applications:(Ⅴ) The implication of pulse adding[J]. High Power Laser and Particle Beams, 2013, 25(08): 1877-1882. doi: 10.3788/HPLPB20132508.1877 |
[8] | Chen Wen, Fan Chengyu, Wang Haitao, Zhang Pengfei, Zhang Jinghui, Qiao Chunhong, Ma Huimin. Numerical study on prolonging lifetime of plasma channels generated by ultra-short laser pulses[J]. High Power Laser and Particle Beams, 2013, 25(04): 813-816. |
[9] | Jiang Weihua. Repetition rate pulsed power technology and its applications: (i) Introduction[J]. High Power Laser and Particle Beams, 2012, 24(01): 10-15. |
[10] | Jiang Weihua. Repetition rate pulsed power technology and its applications: (iii) The role of magnetic switches[J]. High Power Laser and Particle Beams, 2012, 24(06): 1269-1275. doi: 10.3788/HPLPB20122406.1269 |
[11] | Wang Haitao, Fan Chengyu, Shen Hong, Qiao Chunhong, Zhang Jinghui, Zhang Pengfei, Ma Huimin, Xu Huiling. Temporal evolution of plasma density in femtosecond light filaments[J]. High Power Laser and Particle Beams, 2012, 24(05): 1024-1028. doi: 10.3788/HPLPB20122405.1024 |
[12] | Tong Xin, Li Xiao’ang, Zhao Junping, Zhang Qiaogen. Arc radius and resistance measurement of spark gap switch[J]. High Power Laser and Particle Beams, 2012, 24(03): 647-650. doi: 10.3788/HPLPB20122403.0647 |
[13] | zhang zehai, shu ting, zhang jun, liu jing, zhu jun. Suppression of parasitic mode oscillation in relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2011, 23(11): 0- . |
[14] | jin zhaoxin, jiao qingjie, chen xi, jing xiaopeng. Helical flux compression generator utilizing detonation products of aluminized explosive to compress magnetic flux[J]. High Power Laser and Particle Beams, 2010, 22(11): 0- . |
[15] | jiang weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(03): 0- . |
[16] | tang enling, zhang qingming, zhang jian. Conductivity measurement of an expanding plasma cloud generated by hypervelocity impact LY12 aluminum target[J]. High Power Laser and Particle Beams, 2009, 21(02): 0- . |
[17] | li sheng-yin, wu wei-dong, wang feng, wang xue-min, tang yong-jian, sun wei-guo. Effects of Fe-embedding on microstructure and electrical properties of diamond like carbon films[J]. High Power Laser and Particle Beams, 2008, 20(12): 0- . |
[18] | gao jing-ming, liu yong-gui, yin yi, yang jian-hua. Numerical simulation of gas spark gap discharge[J]. High Power Laser and Particle Beams, 2007, 19(06): 0- . |
[19] | lin chen, zhang li-wen, qin xiao, gao jun-yi. Conductivity of self-guided laser plasma channel produced by femtosecond laser pulses in air[J]. High Power Laser and Particle Beams, 2007, 19(05): 0- . |
[20] | xie wei-ping, gong xing-gen, hao shi-rong, sun qi-zhi, liu lie-fang, dai wen-feng, liu zheng-fen, wang min-hua, han wen-hui, dai ying-ming, ding bo-nan. The generation of high Voltage by MFCG through combined Pulse power conditioning system[J]. High Power Laser and Particle Beams, 2001, 13(03): 0- . |